Skip to main content

An Introduction to Multichannel NMF for Audio Source Separation

  • Chapter
  • First Online:
Audio Source Separation

Abstract

This chapter introduces multichannel nonnegative matrix factorization (NMF) methods for audio source separation. All the methods and some of their extensions are introduced within a more general local Gaussian modeling (LGM) framework. These methods are very attractive since allow combining spatial and spectral cues in a joint and principal way, but also are natural extensions and generalizations of many single-channel NMF-based methods to the multichannel case. The chapter introduces the spectral (NMF-based) and spatial models, as well as the way to combine them within the LGM framework. Model estimation criteria and algorithms are described as well, while going deeper into details of some of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the chapter we will generally refer to all these methods as multichannel NMF, while precising when we are speaking about multichannel NTF.

  2. 2.

    The spatial image of a source means not the source signal itself, but its contribution into the I-channel mixture.

  3. 3.

    Due to the scale ambiguity between \(\mathbf{R}_{jfn}\) and \(v_{jfn}\) in (4.2), the loudness can be fully attributed to \(v_{jfn}\).

  4. 4.

    When we write \(\overset{\mathrm{c}}{=}\), that means that the equality is up to some constant that is independent on model parameters \(\varvec{\theta }\), and thus has no influence on the optimization over parameters in (4.23).

  5. 5.

    Note that if the spatial covariances \(\mathbf{R}_{jf}\) are needed, they can be always computed with (4.29).

References

  1. D.D. Lee, H.S. Seung, Learning the parts of objects with nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  MATH  Google Scholar 

  2. T. Virtanen, Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio Speech Lang. Process. 15(3),1066–1074 (2007)

    Google Scholar 

  3. M.N. Schmidt, R.K. Olsson, Single-channel speech separation using sparse non-negative matrix factorization, in Spoken Language Proceesing, ISCA International Conference on (INTERSPEECH) (2006)

    Google Scholar 

  4. L. Le Magoarou, A. Ozerov, N.Q. Duong, Text-informed audio source separation. Example-based approach using non-negative matrix partial co-factorization. J. Signal Process. Syst. 79(2), 117–131 (2015)

    Article  Google Scholar 

  5. C.Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. Neural Comput. 21(3), 793–830 (2009)

    Google Scholar 

  6. D. El Badawy, N.Q. Duong, A. Ozerov, On-the-fly audio source separation—a novel user-friendly framework. IEEE/ACM Trans. Audio Speech Lang. Process. 25(2), 261–272 (2017)

    Article  Google Scholar 

  7. E. Vincent, N. Bertin, R. Badeau, Adaptive harmonic spectral decomposition for multiple pitch estimation. IEEE Trans. Audio Speech Lang. Process. 18, 528–537 (2010)

    Article  Google Scholar 

  8. A. Ozerov, E. Vincent, F. Bimbot, A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. Audio Speech Lang. Process. 20(4), 1118–1133 (2012)

    Article  Google Scholar 

  9. N. Mohammadiha, P. Smaragdis, A. Leijon, Supervised and unsupervised speech enhancement using nonnegative matrix factorization. IEEE Trans. Audio Speech Lang. Process. 21(10), 2140–2151 (2013)

    Article  Google Scholar 

  10. D. FitzGerald, M. Cranitch, E. Coyle, Non-negative tensor factorisation for sound source separation, in Proceeding of the Irish Signals and Systems Conference, Dublin, Ireland, Sept 2005

    Google Scholar 

  11. D. FitzGerald, M. Cranitch, E. Coyle, Extended nonnegative tensor factorisation models for musical sound source separation. Comput. Intell. Neurosci. 2008(872425),15 (2008)

    Google Scholar 

  12. A. Ozerov, C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. Audio Speech Lang. Process. 18(3), 550–563 (2010)

    Article  Google Scholar 

  13. H. Sawada, R. Mukai, S. Araki, S. Makino, A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech Audio Process. 12(5), 530–538 (2004)

    Article  Google Scholar 

  14. M.I. Mandel, D.P. Ellis, T. Jebara, An EM algorithm for localizing multiple sound sources in reverberant environments. NIPS. 19 (2006)

    Google Scholar 

  15. A. Ozerov, C. Févotte, R. Blouet, J.-L. Durrieu, Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, (May 2011), pp. 257–260

    Google Scholar 

  16. H. Sawada, H. Kameoka, S. Araki, N. Ueda, Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. Audio Speech Lang. Process. 21(5), 971–982 (2013)

    Article  Google Scholar 

  17. J. Nikunen, T. Virtanen, Direction of arrival based spatial covariance model for blind sound source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 22(3), 727–739 (2014)

    Article  Google Scholar 

  18. N.Q. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio Speech Lang. Process. 18(7), 1830–1840 (2010)

    Article  Google Scholar 

  19. C.Févotte, J.-F. Cardoso, Maximum likelihood approach for blind audio source separation using time-frequency gaussian source models, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, (IEEE, 2005), pp. 78–81

    Google Scholar 

  20. E. Vincent, S. Arberet, R. Gribonval, Underdetermined instantaneous audio source separation via local gaussian modeling, in International Conference on Independent Component Analysis and Signal Separation. (Springer, 2009), pp. 775–782

    Google Scholar 

  21. H. Kameoka, T. Yoshioka, M. Hamamura, J. Le Roux, K. Kashino, Statistical model of speech signals based on composite autoregressive system with application to blind source separation, in International Conference on Latent Variable Analysis and Signal Separation, (Springer, 2010), pp. 245–253

    Google Scholar 

  22. T. Higuchi, H. Takeda, T. Nakamura, H. Kameoka, A unified approach for underdetermined blind signal separation and source activity detection by multichannel factorial hidden markov models, in INTERSPEECH, (2014), pp. 850–854

    Google Scholar 

  23. J. Breebaart, S. van de Par, A. Kohlrausch, E. Schuijers, Parametric coding of stereo audio. EURASIP J. Appl. Signal Process. 2005, 1305–1322 (2005)

    MATH  Google Scholar 

  24. M.I. Mandel, R.J. Weiss, D.P. Ellis, Model-based expectation-maximization source separation and localization. IEEE Trans. Audio Speech Lang. Process. 18(2), 382–394 (2010)

    Article  Google Scholar 

  25. E. Vincent, X. Rodet, Underdetermined source separation with structured source priors, in International Conference on Independent Component Analysis and Signal Separation, (Springer, 2004), pp. 327–334

    Google Scholar 

  26. E. Vincent, Musical source separation using time-frequency source priors. IEEE Trans. Audio Speech Lang. Process. 14(1), 91–98 (2006)

    Article  Google Scholar 

  27. S. Arberet, A. Ozerov, N.Q. Duong, E. Vincent, R. Gribonval, F. Bimbot, P. Vandergheynst, Nonnegative matrix factorization and spatial covariance model for under-determined reverberant audio source separation, in 10th International Conference on Information Sciences Signal Processing and their Applications (ISSPA), 2010, (IEEE, 2010), pp. 1–4

    Google Scholar 

  28. T. Virtanen, A. Klapuri, Analysis of polyphonic audio using source-filter model and non-negative matrix factorization, in Advances in Models for Acoustic Processing, Neural Information Processing Systems Workshop, (Citeseer, 2006)

    Google Scholar 

  29. N. Souviraà-Labastie, A. Olivero, E. Vincent, F. Bimbot, Multi-channel audio source separation using multiple deformed references. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 23(11), 1775–1787 (2015)

    Article  Google Scholar 

  30. V.Y.F. Tan, C. Févotte, Automatic relevance determination in nonnegative matrix factorization with the beta-divergence. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1592–1605 (2013)

    Google Scholar 

  31. R. Bro, Parafac. tutorial and applications. Chemom. Intell. Lab. Syst. 38(2), 149–171 (1997)

    Article  Google Scholar 

  32. L. Parra, C. Spence, Convolutive blind separation of non-stationary sources. IEEE Trans. Speech Audio Process. 8(3), 320–327 (2000)

    Article  MATH  Google Scholar 

  33. S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov, A consolidated perspective on multimicrophone speech enhancement and source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 25(4), 692–730 (2017)

    Article  Google Scholar 

  34. N.Q. Duong, E. Vincent, R. Gribonval, Spatial location priors for gaussian model based reverberant audio source separation. EURASIP J. Adv. Signal Process. 2013(1), 149 (2013)

    Article  Google Scholar 

  35. R. Badeau, M.D. Plumbley, Multichannel high-resolution nmf for modeling convolutive mixtures of non-stationary signals in the time-frequency domain. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 22(11), 1670–1680 (2014)

    Article  Google Scholar 

  36. D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, R. Horaud, An inverse-gamma source variance prior with factorized parameterization for audio source separation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2016), pp. 136–140

    Google Scholar 

  37. N.Q. Duong, H. Tachibana, E. Vincent, N. Ono, R. Gribonval, S. Sagayama, Multichannel harmonic and percussive component separation by joint modeling of spatial and spectral continuity, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2011), pp. 205–208

    Google Scholar 

  38. T. Higuchi, N. Takamune, T. Nakamura, H. Kameoka, Underdetermined blind separation and tracking of moving sources based on DOA-HMM, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2014), pp. 3191–3195

    Google Scholar 

  39. D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, R. Horaud, A variational EM algorithm for the separation of time-varying convolutive audio mixtures. IEEE/ACM Trans. Audio Speech Lang. Process. 24(8), 1408–1423 (2016)

    Article  Google Scholar 

  40. M. Togami, Online speech source separation based on maximum likelihood of local gaussian modeling, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (IEEE, 2011), pp. 213–216

    Google Scholar 

  41. L.S. Simon, E. Vincent, A general framework for online audio source separation, in International conference on Latent Variable Analysis and Signal Separation, (Springer, 2012), pp. 397–404

    Google Scholar 

  42. N.Q. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separation using local observed covariance and auditory-motivated time-frequency representation, in International Conference on Latent Variable Analysis and Signal Separation, (Springer, 2010), pp. 73–80

    Google Scholar 

  43. K. Adiloğlu, E. Vincent, Variational bayesian inference for source separation and robust feature extraction. IEEE/ACM Trans. Audio Speech Lang. Process. 24(10), 1746–1758 (2016)

    Article  Google Scholar 

  44. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat.Soc. Ser. B (Statistical Methodology) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  45. J. Thiemann, E. Vincent, A fast EM algorithm for Gaussian model-based source separation, in Proceedings of the 21st European Signal Processing Conference (EUSIPCO), (IEEE, 2013), pp. 1–5

    Google Scholar 

  46. D.R. Hunter, K. Lange, A tutorial on mm algorithms. Am. Stat. 58(1), 30–37 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Cédric Févotte acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 681839 (project FACTORY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Ozerov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozerov, A., Févotte, C., Vincent, E. (2018). An Introduction to Multichannel NMF for Audio Source Separation. In: Makino, S. (eds) Audio Source Separation. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73031-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73031-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73030-1

  • Online ISBN: 978-3-319-73031-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics