Skip to main content

The Influence of Cognitive Factors on Balance and Gait

  • Chapter
  • First Online:
Advanced Technologies for the Rehabilitation of Gait and Balance Disorders

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 19))

  • 1672 Accesses

Abstract

Gait and balance impairments are known to be omnipresent among the general elderly population, and especially among elderly people with neurological diseases (see Segev-Jacubovski et al. in Expert Rev Neurother 11:1057–1075, [1] for a review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segev-Jacubovski O, Herman T, Yogev-Seligmann G, Mirelman A, Giladi N, Hausdorff JM. The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Expert Rev Neurother. 2011;11:1057–75. https://doi.org/10.1586/ern.11.69.

    Article  Google Scholar 

  2. Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114:1339–48. https://doi.org/10.1007/s00702-007-0657-0.

    Article  Google Scholar 

  3. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23:329–42.

    Article  Google Scholar 

  4. Cengić L, Vuletić V, Karlić M, Dikanović M, Demarin V. Motor and cognitive impairment after stroke. Acta Clin Croat. 2011;50:463–7.

    Google Scholar 

  5. Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke. 2011;42:1482–8. https://doi.org/10.1161/STROKEAHA.110.604090.

    Article  Google Scholar 

  6. Chen C, Leys D, Esquenazi A. The interaction between neuropsychological and motor deficits in patients after stroke. Neurology. 2013;80:S27–34.

    Article  Google Scholar 

  7. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741–54. https://doi.org/10.1016/S1474-4422(09)70150-4.

    Article  Google Scholar 

  8. Wang XQ, Pi YL, Chen BL, Chen PJ, Liu Y, Wang R, Li X, Waddington G. Cognitive motor interference for gait and balance in stroke: a systematic review and meta-analysis. Eur J Neurol. 2015;22:555–e37. https://doi.org/10.1111/ene.12616.

    Article  Google Scholar 

  9. Smania N, Picelli A, Gandolfi M, Fiaschi A, Tinazzi M. Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: a before/after pilot study. Neurol Sci. 2008;29:313–9. https://doi.org/10.1007/s10072-008-0988-0.

    Article  Google Scholar 

  10. Lesniak M, Bak T, Czepiel W, Seniow J, Czlonkowska A. Frequency and prognostic value of cognitive disorders in stroke patients. Dement Geriatr Cogn Disord. 2008;26:356–63. https://doi.org/10.1159/000162262.

    Article  Google Scholar 

  11. Nys G, van Zandvoort M, de Kort P, Jansen B, de Haan E, Kappelle L. Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovasc Dis. 2007;23:408–16.

    Article  Google Scholar 

  12. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, Wolfe CD. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32:1279–84.

    Article  Google Scholar 

  13. Patel M, Coshall C, Rudd AG, Wolfe CD. Natural history of cognitive impairment after stroke and factors associated with its recovery. Clin Rehabil. 2003;17:158–66.

    Article  Google Scholar 

  14. Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, Hietanen M. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22:1288–94. https://doi.org/10.1111/ene.12743.

    Article  Google Scholar 

  15. Berti A, Smania N, Rabuffetti M, Ferrarin M, Spinazzola L, D’Amico A, Ongaro E, Allport A. Coding of far and near space during walking in neglect patients. Neuropsychology. 2002;16:390–9.

    Article  Google Scholar 

  16. Huitema RB, Brouwer WH, Hof AL, Dekker R, Mulder T, Postema K. Walking trajectory in neglect patients. Gait Posture. 2006;23:200–5.

    Article  Google Scholar 

  17. Cho KH, Lee JY, Lee KJ, Kang EK. Factors related to gait function in post-stroke patients. J Phys Ther Sci. 2014;26:1941–4. https://doi.org/10.1589/jpts.26.1941.

    Article  Google Scholar 

  18. Bowen A, Wenman R, Mickelborough J, Foster J, Hill E, Tallis R. Dual-task effects of talking while walking on velocity and balance following a stroke. Age Ageing. 2001;30:319–23.

    Article  Google Scholar 

  19. Chen G, Patten C, Kothari DH, Zajac FE. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture. 2005;22:57–62.

    Article  Google Scholar 

  20. Lee KB, Kim JH, Lee KS. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke. J Phys Ther Sci. 2015;27:1173–6. https://doi.org/10.1589/jpts.27.1173.

    Article  Google Scholar 

  21. Campos Sasaki A, Pinto EB, Mendel T, Sá KN, Oliveira-Filho J, D’Oliveira A Jr. Association between dual-task performance and balance during gait in community-dwelling elderly people after stroke. Healthy Aging Res. 2015;4:29. https://doi.org/10.12715/har.2015.4.29.

    Google Scholar 

  22. Nijboer TC, Olthoff L, Van der Stigchel S, Visser-Meily JM. Prism adaptation improves postural imbalance in neglect patients. NeuroReport. 2014;25:307–11. https://doi.org/10.1097/WNR.0000000000000088.

    Article  Google Scholar 

  23. Stapleton T, Ashburn A, Stack E. A pilot study of attention deficits, balance control and falls in the subacute stage following stroke. Clin Rehabil. 2001;15:437–44.

    Article  Google Scholar 

  24. Malouin F, Richards CL, Doyon J, Desrosiers J, Belleville S. Training mobility tasks after stroke with combined mental and physical practice: a feasibility study. Neurorehabil Neural Repair. 2004;18:66–75.

    Article  Google Scholar 

  25. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther. 2000;80:896–903.

    Google Scholar 

  26. Hyndman D, Ashburn A. People with stroke living in the community: attention deficits, balance, ADL ability and falls. Disabil Rehabil. 2003;25:817–22.

    Article  Google Scholar 

  27. Hwang S, Woo Y, Kim KH, Ki KI. Effects of falls experience on cognitive functions and physical activities in community-dwelling individuals with chronic stroke. Int J Rehabil Res. 2013;36:134–9. https://doi.org/10.1097/MRR.0b013e32835b667e.

    Article  Google Scholar 

  28. van Iersel MB, Kessels RP, Bloem BR, Verbeek AL, Olde Rikkert MG. Executive functions are associated with gait and balance in community-living elderly people. J Gerontol A Biol Sci Med Sci. 2008;63:1344–9.

    Article  Google Scholar 

  29. Her JG, Park KD, Yang YA, Ko T, Kim H, Lee J, Woo JH, Ko J. Effects of balance training with various dual-task conditions on stroke patients. J Phys Ther Sci. 2011;23:713–7.

    Article  Google Scholar 

  30. Zheng J, Wang X, Xu Y, Yang Y, Shen L, Liang Z. Cognitive dual-task training improves balance function in patients with stroke. HealthMED. 2012;6:840–5.

    Google Scholar 

  31. An HJ, Kim JI, Kim YR, Lee KB, Kim DJ, Yoo KT, Choi JH. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke. J Phys Ther Sci. 2014;26:1287–91. https://doi.org/10.1589/jpts.26.1287.

    Article  Google Scholar 

  32. Lee IW, Kim YN, Lee DK. Effect of a virtual reality exercise program accompanied by cognitive tasks on the balance and gait of stroke patients. J Phys Ther Sci. 2015;27:2175–7. https://doi.org/10.1589/jpts.27.2175.

    Article  Google Scholar 

  33. Nijboer TC, Ten Brink AF, van der Stoep N, Visser-Meily JM. Neglecting posture: differences in balance impairments between peripersonal and extrapersonal neglect. NeuroReport. 2014;25:1381–5. https://doi.org/10.1097/WNR.0000000000000277.

    Article  Google Scholar 

  34. Sturt R, Punt TD. Caloric vestibular stimulation and postural control in patients with spatial neglect following stroke. Neuropsychol Rehabil. 2013;23:299–316. https://doi.org/10.1080/09602011.2012.755831.

    Article  Google Scholar 

  35. Meara J, Bhowmick BK. Parkinson’s disease and Parkinsonism in the elderly: introduction. In: Meara J, Koller WC, editors. Parkinson’s Disease and Parkinsonism in the Elderly. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  36. Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci. 2004;24:702–10.

    Article  Google Scholar 

  37. Picelli A, Camin M, Tinazzi M, Vangelista A, Cosentino A, Fiaschi A, Smania N. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson’s disease: a preliminary investigation. Neurol Sci. 2010;31:423–30. https://doi.org/10.1007/s10072-010-0228-2.

    Article  Google Scholar 

  38. Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ. Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:110–5. https://doi.org/10.1016/j.parkreldis.2008.03.010.

    Article  Google Scholar 

  39. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65:1239–45.

    Article  Google Scholar 

  40. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol. 2013;7:193–224. https://doi.org/10.1111/jnp.12028.

    Article  Google Scholar 

  41. Winter Y, von Campenhausen S, Arend M, Longo K, Boetzel K, Eggert K, et al. Health-related quality of life and its determinants in Parkinson’s disease: results of an Italian cohort study. Park Relat Disord. 2011;17:265–9. https://doi.org/10.1016/j.parkreldis.2011.01.003.

    Article  Google Scholar 

  42. Rosenthal E, Brennan L, Xie S, Hurtig H, Milber J, Weintraub D, et al. Association between cognition and function in patients with Parkinson disease with and without dementia. Mov Disord. 2010;25:1170–6. https://doi.org/10.1002/mds.23073.

    Article  Google Scholar 

  43. Stuss DT, Alexander MP. Is there a dysexecutive syndrome? Philos Trans R Soc Lond B Biol Sci. 2007;362:901–15. https://doi.org/10.1098/rstb.2007.2096.

    Article  Google Scholar 

  44. Burn DJ, Rowan EN, Allan LM, Molloy S, O’Brien JT, McKeith IG. Motor sub-type and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2006;77:585–9.

    Article  Google Scholar 

  45. Vervoort G, Bengevoord A, Nackaerts E, Heremans E, Vandenberghe W, Nieuwboer A. Distal motor deficit contributions to postural instability and gait disorder in Parkinson’s disease. Behav Brain Res. 2015;287:1–7. https://doi.org/10.1016/j.bbr.2015.03.026.

    Article  Google Scholar 

  46. Herman T, Weiss A, Brozgol M, Giladi N, Hausdorff JM. Gait and balance in Parkinson’s disease subtypes: objective measures and classification considerations. J Neurol. 2014;261:2401–10. https://doi.org/10.1007/s00415-014-7513-6.

  47. Domellöf ME, Elgh E, Forsgren L. The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov Disord. 2011;26:2183–9. https://doi.org/10.1002/mds.23814.

    Article  Google Scholar 

  48. Poletti M, Frosini D, Pagni C, Baldacci F, Nicoletti V, Tognoni G, Lucetti C, Del Dotto P, Ceravolo R, Bonuccelli U. Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83:601–6. https://doi.org/10.1136/jnnp-2011-301874.

    Article  Google Scholar 

  49. Varalta V, Picelli A, Fonte C, Amato S, Melotti C, Zatezalo V, Saltuari L, Smania N. Relationship between cognitive performance and motor dysfunction in patients with Parkinson’s disease: a pilot cross-sectional study. Biomed Res Int. 2015;2015:365959. https://doi.org/10.1155/2015/365959.

    Article  Google Scholar 

  50. Kelly VE, Johnson CO, McGough EL, Shumway-Cook A, Horak FB, Chung KA, Espay AJ, Revilla FJ, Devoto J, Wood-Siverio C, Factor SA, Cholerton B, Edwards KL, Peterson AL, Quinn JF, Montine TJ, Zabetian CP, Leverenz JB. Association of cognitive domains with postural instability/gait disturbance in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:692–7. https://doi.org/10.1016/j.parkreldis.2015.04.002.

    Article  Google Scholar 

  51. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–44. https://doi.org/10.1016/S1474-4422(11)70143-0.

    Article  Google Scholar 

  52. Giladi N, Treves TA, Simon ES, et al. Freezing of gait in patients with advanced Parkinson’s disease. J Neural Transm. 2001;108:53–61.

    Article  Google Scholar 

  53. Giladi N, Hausdorff JM. The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J Neurol Sci. 2006;248:173–6.

    Article  Google Scholar 

  54. Amboni M, Cozzolino A, Longo K, Picillo M, Barone P. Freezing of gait and executive functions in patients with Parkinson’s disease. Mov Disord. 2008;23:395–400.

    Article  Google Scholar 

  55. Naismith SL, Shine JM, Lewis SJ. The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov Disord. 2010;25:1000–4. https://doi.org/10.1002/mds.23005.

    Article  Google Scholar 

  56. Ricciardi L, Bloem BR, Snijders AH, Daniele A, Quaranta D, Bentivoglio AR, Fasano A. Freezing of gait in Parkinson’s disease: the paradoxical interplay between gait and cognition. Parkinsonism Relat Disord. 2014;20:824–9. https://doi.org/10.1016/j.parkreldis.2014.04.009.

    Article  Google Scholar 

  57. Stefanova E, Ječmenica Lukić M, Ziropadja L, Marković V, Stojković T, Tomić A, Dragašević Mišković N, Kostić V. Attentional set-shifting in Parkinson’s disease patients with freezing of gait-acquisition and discrimination set learning deficits at the background? J Int Neuropsychol Soc. 2014;20:929–36. https://doi.org/10.1017/S1355617714000769.

    Article  Google Scholar 

  58. Teramoto H, Morita A, Ninomiya S, Shiota H, Kamei S. Relation between freezing of gait and frontal function in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1046–9. https://doi.org/10.1016/j.parkreldis.2014.06.022.

    Article  Google Scholar 

  59. Vandenbossche J, Deroost N, Soetens E, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E. Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil Neural Repair. 2011;25:765–73. https://doi.org/10.1177/1545968311403493.

    Article  Google Scholar 

  60. Vercruysse S, Devos H, Munks L, Spildooren J, Vandenbossche J, Vandenberghe W, Nieuwboer A, Heremans E. Explaining freezing of gait in Parkinson’s disease: motor and cognitive determinants. Mov Disord. 2012;27:1644–51. https://doi.org/10.1002/mds.25183.

    Article  Google Scholar 

  61. Delval A, Moreau C, Bleuse S, Guehl D, Bestaven E, Guillaud E, Dujardin K, Defebvre L, Devos D. Gait and attentional performance in freezers under methylphenidate. Gait Posture. 2015;41:384–8. https://doi.org/10.1016/j.gaitpost.2014.10.022.

    Article  Google Scholar 

  62. Fuller RL, Van Winkle EP, Anderson KE, Gruber-Baldini AL, Hill T, Zampieri C, Weiner WJ, Shulman LM. Dual task performance in Parkinson’s disease: a sensitive predictor of impairment and disability. Parkinsonism Relat Disord. 2013;19:325–8. https://doi.org/10.1016/j.parkreldis.2012.11.011.

    Article  Google Scholar 

  63. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson’s dis- ease: which aspects of gait are attention demanding? Eur J Neurosci. 2005;22:1248–56.

    Article  Google Scholar 

  64. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis. 2012;2012:918719. https://doi.org/10.1155/2012/918719.

    Google Scholar 

  65. Lee JM, Koh SB, Chae SW, Seo WK, Kwon do Y, Kim JH, Oh K, Baik JS, Park KW. Postural instability and cognitive dysfunction in early Parkinson’s disease. Can J Neurol Sci. 2012;39:473–82.

    Article  Google Scholar 

  66. Camicioli R, Majumdar SR. Relationship between mild cognitive impairment and falls in older people with and without Parkinson’s disease: 1-Year Prospective Cohort Study. Gait Posture. 2010;32:87–91. https://doi.org/10.1016/j.gaitpost.2010.03.013.

    Article  Google Scholar 

  67. Mak MK, Wong A, Pang MY. Impaired executive function can predict recurrent falls in Parkinson’s disease. Arch Phys Med Rehabil. 2014;95:2390–5. https://doi.org/10.1016/j.apmr.2014.08.006.

    Article  Google Scholar 

  68. Paul SS, Sherrington C, Canning CG, Fung VS, Close JC, Lord SR. The relative contribution of physical and cognitive fall risk factors in people with Parkinson’s disease: a large prospective cohort study. Neurorehabil Neural Repair. 2014;28:282–90. https://doi.org/10.1177/1545968313508470.

    Article  Google Scholar 

  69. King LA, Peterson DS, Mancini M, Carlson-Kuhta P, Fling BW, Smulders K, Nutt JG, Dale M, Carter J, Winters-Stone KM, Horak FB. Do cognitive measures and brain circuitry predict outcomes of exercise in Parkinson Disease: a randomized clinical trial. BMC Neurol. 2015;15:218. https://doi.org/10.1186/s12883-015-0474-2.

    Article  Google Scholar 

  70. Picelli A, Varalta V, Melotti C, Zatezalo V, Fonte C, Amato S, Saltuari L, Santamato A, Fiore P, Smania N. Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson’s disease: a pilot, single-blind, randomized controlled trial. Funct Neurol. 2016;31:25–31.

    Google Scholar 

  71. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66:234–40. https://doi.org/10.1093/gerona/glq201.

    Article  Google Scholar 

  72. Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol. 2001;2:762–4.

    Article  Google Scholar 

  73. Karni A, Kahana E, Zilber N, Abramsky O, Alter M, Karussis D. The frequency of multiple sclerosis in jewish and arab populations in greater jerusalem. Neuroepidemiology. 2003;22:82–6.

    Article  Google Scholar 

  74. D’Orio VL, Foley FW, Armentano F, Picone MA, Kim S, Holtzer R. Cognitive and motor functioning in patients with multiple sclerosis: neuropsychological predictors of walking speed and falls. J Neurol Sci. 2012;316:42–6. https://doi.org/10.1016/j.jns.2012.02.003.

    Article  Google Scholar 

  75. McNalley TE, Haselkorn JK. Disorders of mobility in multiple sclerosis. In: Giesser BS, editor. Primer on multiple sclerosis. New York: Oxford University Press; 2011. p. 189–96.

    Google Scholar 

  76. Loitfelder M, Fazekas F, Koschutnig K, Fuchs S, Petrovic K, Ropele S, Pichler A, Jehna M, Langkammer C, Schmidt R, Neuper C, Enzinger C. Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis—insights from a longitudinal FMRI study. PLoS ONE. 2014;9:e93715. https://doi.org/10.1371/journal.pone.0093715.

    Article  Google Scholar 

  77. Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008;7:1139–51. https://doi.org/10.1016/S1474-4422(08)70259-X.

    Article  Google Scholar 

  78. Benedict RH, Zivadinov R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol. 2011;7:332–42. https://doi.org/10.1038/nrneurol.2011.61.

    Article  Google Scholar 

  79. Amato MP, Zipoli V, Portaccio E. Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies. J Neurol Sci. 2006;245:41–6.

    Article  Google Scholar 

  80. Sandroff BM. Exercise and cognition in multiple sclerosis: The importance of acute exercise for developing better interventions. Neurosci Biobehav Rev. 2015;59:173–83. https://doi.org/10.1016/j.neubiorev.2015.10.012.

    Article  Google Scholar 

  81. Benedict RH, Holtzer R, Motl RW, Foley FW, Kaur S, Hojnacki D, et al. Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. J Int Neuropsychol Soc. 2011;13:1–11.

    Google Scholar 

  82. Motl RW, Sosnoff JJ, Dlugonski D, Pilutti LA, Klaren R, Sandroff BM. Walking and cognition, but not symptoms, correlate with dual task cost of walking in multiple sclerosis. Gait Posture. 2014;39:870–4. https://doi.org/10.1016/j.gaitpost.2013.11.023.

    Article  Google Scholar 

  83. Brønnum-Hansen H, Hansen T, Koch-Henriksen N, Stenager E. Fatal accidents among Danes with multiple sclerosis. Mult Scler. 2006;12:329–32.

    Article  Google Scholar 

  84. Sosnoff JJ, Balantrapu S, Pilutti LA, Sandroff BM, Morrison S, Motl RW. Cognitive processing speed is related to fall frequency in older adults with multiple sclerosis. Arch Phys Med Rehabil. 2013;94:1567–72. https://doi.org/10.1016/j.apmr.2013.02.009.

    Article  Google Scholar 

  85. Wajda DA, Sosnoff JJ. Cognitive-motor interference in multiple sclerosis: a systematic review of evidence, correlates, and consequences. Biomed Res Int. 2015;2015:720856. https://doi.org/10.1155/2015/720856.

    Article  Google Scholar 

  86. Allali G, Laidet M, Assal F, Armand S, Lalive PH. Walking while talking in patients with multiple sclerosis: the impact of specific cognitive loads. Neurophysiol Clin. 2014;44:87–93. https://doi.org/10.1016/j.neucli.2013.10.136.

    Article  Google Scholar 

  87. Allali G, Laidet M, Assal F, Chofflon M, Armand S, Lalive PH. Dual-task assessment in natalizumab-treated multiple sclerosis patients. Eur Neurol. 2014;71:247–51. https://doi.org/10.1159/000357217.

    Article  Google Scholar 

  88. Gunn H, Creanor S, Haas B, Marsden J, Freeman J. Risk factors for falls in multiple sclerosis: an observational study. Mult Scler. 2013;19:1913–22. https://doi.org/10.1177/1352458513488233.

    Article  Google Scholar 

  89. Hamilton F, Rochester L, Paul L, Rafferty D, O’Leary CP, Evans JJ. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis. Mult Scler. 2009;15:1215–27. https://doi.org/10.1177/1352458509106712.

    Article  Google Scholar 

  90. Kalron A, Dvir Z, Achiron A. Walking while talking–difficulties incurred during the initial stages of multiple sclerosis disease process. Gait Posture. 2010;32:332–5. https://doi.org/10.1016/j.gaitpost.2010.06.002.

    Article  Google Scholar 

  91. Kramer A, Dettmers C, Gruber M. Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to home-based balance training. Arch Phys Med Rehabil. 2014;95:1803–9. https://doi.org/10.1016/j.apmr.2014.04.020.

    Article  Google Scholar 

  92. Learmonth YC, Sandroff BM, Pilutti LA, Klaren RE, Ensari I, Riskin BJ, Holtzer R, Motl RW. Cognitive motor interference during walking in multiple sclerosis using an alternate-letter alphabet task. Arch Phys Med Rehabil. 2014;95:1498–503. https://doi.org/10.1016/j.apmr.2014.03.007.

  93. Nogueira LA, Dos Santos LT, Sabino PG, Alvarenga RM, Santos Thuler LC. Factors for lower walking speed in persons with multiple sclerosis. Mult Scler Int. 2013;2013:875648. https://doi.org/10.1155/2013/875648.

    Google Scholar 

  94. Nogueira LA, Santos LT, Sabino PG, Alvarenga RM, Thuler LC. Walking execution is not affected by divided attention in patients with multiple sclerosis with no disability, but there is a motor planning impairment. Arq Neuropsiquiatr. 2013;71:521–6. https://doi.org/10.1590/0004-282X20130080.

    Article  Google Scholar 

  95. Sosnoff JJ, Boes MK, Sandroff BM, Socie MJ, Pula JH, Motl RW. Walking and thinking in persons with multiple sclerosis who vary in disability. Arch Phys Med Rehabil. 2011;92:2028–33. https://doi.org/10.1016/j.apmr.2011.07.004.

    Article  Google Scholar 

  96. Sosnoff JJ, Socie MJ, Sandroff BM, Balantrapu S, Suh Y, Pula JH, Motl RW. Mobility and cognitive correlates of dual task cost of walking in persons with multiple sclerosis. Disabil Rehabil. 2014;36:205–9. https://doi.org/10.3109/09638288.2013.782361.

    Article  Google Scholar 

  97. Wajda DA, Motl RW, Sosnoff JJ. Dual task cost of walking is related to fall risk in persons with multiple sclerosis. J Neurol Sci. 2013;335:160–3. https://doi.org/10.1016/j.jns.2013.09.021.

    Article  Google Scholar 

  98. Wajda DA, Sandroff BM, Pula JH, Motl RW, Sosnoff JJ. Effects of walking direction and cognitive challenges on gait in persons with multiple sclerosis. Mult Scler Int. 2013;2013:859323. https://doi.org/10.1155/2013/859323.

    Google Scholar 

  99. Peruzzi A, Cereatti A, Della Croce U, Mirelman A. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2016;5:91–6. https://doi.org/10.1016/j.msard.2015.11.002.

    Article  Google Scholar 

  100. Wajda DA, Motl RW, Sosnoff JJ. Correlates of dual task cost of standing balance in individuals with multiple sclerosis. Gait Posture. 2014;40:352–6. https://doi.org/10.1016/j.gaitpost.2014.04.209.

    Article  Google Scholar 

  101. Boes MK, Sosnoff JJ, Socie MJ, Sandroff BM, Pula JH, Motl RW. Postural control in multiple sclerosis: effects of disability status and dual task. J Neurol Sci. 2012;315:44–8. https://doi.org/10.1016/j.jns.2011.12.006.

    Article  Google Scholar 

  102. Jacobs JV, Kasser SL. Effects of dual tasking on the postural performance of people with and without multiple sclerosis: a pilot study. J Neurol. 2012;259:1166–76. https://doi.org/10.1007/s00415-011-6321-5.

    Article  Google Scholar 

  103. Kalron A, Dvir Z, Achiron A. Effect of a cognitive task on postural control in patients with a clinically isolated syndrome suggestive of multiple sclerosis. Eur J Phys Rehabil Med. 2011;47:579–86.

    Google Scholar 

  104. Negahban H, Mofateh R, Arastoo AA, Mazaheri M, Yazdi MJ, Salavati M, Majdinasab N. The effects of cognitive loading on balance control in patients with multiple sclerosis. Gait Posture. 2011;34:479–84. https://doi.org/10.1016/j.gaitpost.2011.06.023.

    Article  Google Scholar 

  105. Negahban H, Sanjari MA, Mofateh R, Parnianpour M. Nonlinear dynamical structure of sway path during standing in patients with multiple sclerosis and in healthy controls is affected by changes in sensory input and cognitive load. Neurosci Lett. 2013;553:126–31. https://doi.org/10.1016/j.neulet.2013.08.024.

    Article  Google Scholar 

  106. Sandroff BM, Motl RW. Fitness and cognitive processing speed in persons with multiple sclerosis: a cross-sectional investigation. J Clin Exp Neuropsychol. 2012;34:1041–52. https://doi.org/10.1080/13803395.2012.715144.

    Article  Google Scholar 

  107. Krishnan V, Kanekar N, Aruin AS. Anticipatory postural adjustments in individuals with multiple sclerosis. Neurosci Lett. 2012;506:256–60. https://doi.org/10.1016/j.neulet.2011.11.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Varalta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varalta, V., Fonte, C., Munari, D. (2018). The Influence of Cognitive Factors on Balance and Gait. In: Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A. (eds) Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72736-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72735-6

  • Online ISBN: 978-3-319-72736-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics