Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 19))

Abstract

Today’s concepts of motor learning address the demand for adequate therapy solutions with a task-specific approach. Since the 1990s, robot-assisted gait training (RAGT) has become a promising approach, alongside conventional rehabilitation, for treating gait disturbances in patients with neurological disease. RAGT devices enable the patient to practice an intensive, repetitive and assisted gait-like movement and have been found to improve mobility and independence in activities of daily living (Sale et al. in Eur J Phys Rehabil Med 48:111–21, 2012, [31]). On the basis of their driving principles, robotic devices for gait rehabilitation can be divided into two categories: exoskeleton and end-effector robots (Mehrholz and Pohl in J Rehabil Med 44:193–9, 2012, [20]). The former, extensively described elsewhere in this book, consist of treadmill-centered technology combined with an exoskeleton and a body weight support system. The latter represent an alternative approach in which footplates are used to guide the feet and thereby reproduce the gait trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua J, Culpan J, Menon E. Efficacy of an electromechanical gait trainer poststroke in Singapore: a randomized controlled trial. Arch Phys Med Rehabil. 2016;97(5):683–90.

    Article  Google Scholar 

  2. Chung E, Kim JH, Park DS, Lee BH. Effects of brain-computer interface-base functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial. J Phys Ther Sci. 2015;27(3):559–62.

    Article  Google Scholar 

  3. Conesa L, Costa Ú, Morales E, et al. An observational report of intensive robotic and manual gait training in sub-acute stroke. J Neuroeng Rehabil. 2012;9:13.

    Article  Google Scholar 

  4. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–43.

    Article  Google Scholar 

  5. Dias D, Laíns J, Pereira A, et al. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys. 2007;43(4):499–504.

    Google Scholar 

  6. Dobkin BH. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J Physiol. 2007;579(3):637–42.

    Google Scholar 

  7. Domingo A, Ferris D. The effects of error augmentation on learning to walk on a narrow balance beam. Exp Brain Res. 2010;206(4):359–70.

    Article  Google Scholar 

  8. Emken JL, Reinkensmeyer DJ. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):33–9.

    Article  Google Scholar 

  9. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7–8):625–32.

    Article  Google Scholar 

  10. Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J Rehabil Med. 2009;41(9):734–9.

    Article  Google Scholar 

  11. Gandolfi M, Geroin C, Picelli A, et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014;22(8):318.

    Google Scholar 

  12. Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil. 2011;25:537–48.

    Article  Google Scholar 

  13. Hesse S, Sarkodie-Gyan T, Uhlenbrock D. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects. Biomed Tech. 1999;44:194–201.

    Article  Google Scholar 

  14. Hesse S, Tomelleri C, Bardeleben A, Werner C, Waldner A. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. J Rehabil Res Dev. 2012;49(4):613–22.

    Article  Google Scholar 

  15. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;28(7):30.

    Article  Google Scholar 

  16. Hesse S, Werner C. Connecting research to the needs of patients and clinicians. Brain Res Bull. 2009;78(1):26–34.

    Article  Google Scholar 

  17. Hesse S, Werner C, Uhlenbrock D, von Frankenberg S, Bardeleben A, Brandl-Hesse B. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results. Neurorehabil Neural Repair. 2001;15(1):39–50.

    Article  Google Scholar 

  18. Koenig A, Omlin X, Bergmann J, et al. Controlling patient participation during robot-assisted gait training. J Neuroeng Rehabil. 2011;23(8):14.

    Article  Google Scholar 

  19. Krebs HI, Volpe BT, Aisen ML, Hogan N. Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev. 2000;37(6):639–52.

    Google Scholar 

  20. Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012;44:193–9.

    Article  Google Scholar 

  21. Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169–74.

    Article  Google Scholar 

  22. Mirelman A, Patritti BL, Bonato P, Deutsch JE. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 2010;31(4):433–7.

    Article  Google Scholar 

  23. Morone G, Bragoni M, Iosa M, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair. 2011;25(7):636–44.

    Article  Google Scholar 

  24. Ng MF, Tong RK, Li LS. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up. Stroke. 2008;39(1):154–60.

    Article  Google Scholar 

  25. Peurala SH, Airaksinen O, Huuskonen P, et al. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med. 2009;41(3):166–73.

    Article  Google Scholar 

  26. Peurala SH, Tarkka IM, Pitkänen K, Sivenius J. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil. 2005;86(8):1557–64.

    Article  Google Scholar 

  27. Picelli A, Melotti C, Origano F. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair. 2012;26:353–61.

    Article  Google Scholar 

  28. Picelli A, Melotti C, Origano F, et al. Robot-assisted gait training is not superior to balance training for improving postural instability in patients with mild to moderate Parkinson’s disease: a single-blind randomized controlled trial. Clin Rehabil. 2015;29:339–47.

    Article  Google Scholar 

  29. Pohl M, Werner C, Holzgraefe M, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.

    Article  Google Scholar 

  30. Reinkensmeyer DJ, Patton JL. Can robots help the learning of skilled actions? Exerc Sport Sci Rev. 2009;37(1):43–51.

    Article  Google Scholar 

  31. Sale P, Franceschini M, Waldner A, Hesse S. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med. 2012;48:111–21.

    Google Scholar 

  32. Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil. 2007;9(4):2.

    Article  Google Scholar 

  33. Schwartz I, Meiner Z. Robotic-assisted gait training in neurological patients: who may benefit? Ann Biomed Eng. 2015;43:1260–9.

    Article  Google Scholar 

  34. Smania N, Bonetti P, Gandolfi M, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90:137–49.

    Article  Google Scholar 

  35. Tanaka N, Saitou H, Takao T, et al. Effects of gait rehabilitation with a footpad-type locomotion interface in patients with chronic post-stroke hemiparesis: a pilot study. Clin Rehabil. 2012;26(8):686–95.

    Article  Google Scholar 

  36. Tomelleri C, Waldner A, Werner C, Hesse S. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. IEEE Int Conf Rehabil Robot. 2011;2011:5975492.

    Google Scholar 

  37. Tong RK, Ng MF, Li LS. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1298–304.

    Article  Google Scholar 

  38. Turner DL, Ramos-Murguialday A, Birbaumer N, Hoffmann U, Luft A. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front Neurol. 2013;13(4):184.

    Google Scholar 

  39. Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 2002;33(12):2895–901.

    Article  Google Scholar 

  40. Yano H, Masuda T, Nakajima Y, et al. Development of a gait rehabilitation system with a spherical immersive projection display. J Robotics Mechatronics. 2008;12:836–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Smania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smania, N., Geroin, C., Valè, N., Gandolfi, M. (2018). The End-Effector Device for Gait Rehabilitation. In: Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A. (eds) Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72736-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72735-6

  • Online ISBN: 978-3-319-72736-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics