Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 19))

Abstract

Walking recovery is one of the most important outcomes of neurorehabilitation in patients affected by stroke. Despite the effectiveness of current interventions, great steps forward still need to be made in order to improve the variability of response to rehabilitation treatments. A neurorehabilitation approach integrating cognitive-motor interventions with sensory input would help to improve the efficacy of rehabilitation interventions. Consideration should also be given to the need combine conventional techniques and innovative new technologies, so as to improve, in particular, the outcome of more severe patients who are less responsive to conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aprile I, Ferrarin M, Padua L, Di Sipio E, Simbolotti C, Petroni S, Tredici C, Dickmann A. Walking strategies in subjects with congenital or early onset strabismus. Front Hum Neurosci. 2014;8:484.

    Article  Google Scholar 

  2. Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011;8:66. https://doi.org/10.1186/1743-0003-8-66.

  3. Berthoz A. The Brain’s Sense of Movement (translated by G.Weiss). Boston: Harvard University Press; 2000.

    Google Scholar 

  4. Berthoz A, Pozzo T. Head and body coordination during locomotion and complex movements. In: Swinnen S, Heuer H, Massion J, Casaer P, editors. Interlimb coordination. San Diego: Academic Press; 1994.

    Google Scholar 

  5. Bragoni M, Broccoli M, Iosa M, et al. Influence of psychologic features on rehabilitation outcomes in patients with subacute stroke trained with robotic-aided walking therapy. Am J Phys Med Rehabil. 2013;92(10 Suppl 2):e16–25.

    Article  Google Scholar 

  6. Cappozzo A. Analysis of the linear displacement of the head and trunk during walking at different speeds. J Biomech. 1981;14:411–25.

    Article  Google Scholar 

  7. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010;103:844–57.

    Article  Google Scholar 

  8. Datteri E. Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics. Sci Eng Ethics. 2013;19(1):139–60.

    Article  Google Scholar 

  9. Di Monaco M, Trucco M, Di Monaco R, Tappero R, Cavanna A. The relationship between initial trunk control or postural balance and inpatient rehabilitation outcome after stroke: a prospective comparative study. Clin. Rehabil. 2010;24:543–54.

    Article  Google Scholar 

  10. Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26(4):308–17.

    Article  Google Scholar 

  11. Donnan GA. Rehabilitation: the sleeping giant of stroke medicine. Int J Stroke. 2013;8(1):1.

    Article  Google Scholar 

  12. Fusco A, Gallotta MC, Iosa M, Morone G, Iasevoli L, Trifoglio D, Saraceni VM, Paolucci S, Baldari C, Guidetti L. The dynamic motor imagery of locomotion is task-dependent in patients with stroke. Restor Neurol Neurosci. 2016;34(2):247–56. https://doi.org/10.3233/RNN-150573.

    Google Scholar 

  13. Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair. 2010;24(5):404–12. https://doi.org/10.1177/1545968309354536.

    Article  Google Scholar 

  14. Gizzi L, Feldbæk Nielsen J, Felici F, Farina D. Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol. 2011;106:202–10.

    Article  Google Scholar 

  15. Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F. Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain. 2004;127:1019–34.

    Article  Google Scholar 

  16. Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 1985;228:143–9.

    Article  Google Scholar 

  17. Guertin PA. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Front Hum Neurosci. 2014;8:272.

    Article  Google Scholar 

  18. Gustafson Y. Falls and injuries after stroke: time for action! Stroke. 2003;34(2):494–501.

    Article  MathSciNet  Google Scholar 

  19. Hamacher D, Singh NB, Van Dieën JH, Heller MO, Taylor WR. Kinematic measures for assessing gait stability in elderly individuals: a systematic review. J R Soc Interface. 2011;8:1682–98.

    Article  Google Scholar 

  20. Hodt-Billington C, Helbostad JL, Moe-Nilssen R. Should trunk movement or footfall parameters quantify gait asymmetry in chronic stroke patients? Gait Posture. 2008;27:552–8.

    Article  Google Scholar 

  21. Inman VT, Ralston HJ, Todd F. Human walking. Baltimore: Williams & Wilkins; 1981.

    Google Scholar 

  22. Iosa M, Fusco A, Morone G, Paolucci S. Development and decline of upright gait stability. Front Aging Neurosci. 2014; 6:14. https://doi.org/10.3389/fnagi.2014.00014.

  23. Iosa M, Morone G, Cherubini A, Paolucci S. The three laws of Neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng. 2016;2016(36):1–11.

    Article  Google Scholar 

  24. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. 2016;13(7):641–59. https://doi.org/10.1080/17434440.2016.1198694.

    Article  Google Scholar 

  25. Iosa M, Fusco A, Morone G, Pratesi L, Coiro P, Venturiero V, De Angelis D, Bragoni M, Paolucci S. Assessment of upper body dynamic stability during walking in patients with subacute stroke. J Rehabil Res Dev. 2012;49:439–50.

    Article  Google Scholar 

  26. Iosa M, Marro T, Paolucci S, Morelli D. Stability and harmony of gait in children with cerebral palsy. Res Dev Disabil. 2012;33(1):129–35.

    Article  Google Scholar 

  27. Iosa M, Morone G, Fusco A, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Pratesi L, Paolucci S. Seven capital devices for the future of stroke rehabilitation. Stroke Res. Treat. 2012;2012:187965.

    Google Scholar 

  28. Iosa M, Morone G, Fusco A, Pratesi L, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Paolucci S. Effects of walking endurance reduction on gait stability in patients with stroke. Stroke Res Treat. 2012;2012:810415.

    Google Scholar 

  29. Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D. A brain computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin Neurophysiol. 2014;S1388–2457(14):1–00252.

    Google Scholar 

  30. King JC, Nelson TR, Heye ML, Turturro TC, Titus MND. Presciptions, referals, order writing, and rehabilitation team function. In: DLisa JA and Gans BM, editors. Rehabilitation medicine: principle and practice, Third Edition. Limppincott-Raven Publishers, Philadelphia, 1998.

    Google Scholar 

  31. Kirtley C. Clinical gait analysis; theory and practice. Philadelphia, PA: Elsevier; 2006.

    Google Scholar 

  32. Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil. 2011;8:2.

    Article  Google Scholar 

  33. Langhorne P, Stott DJ, Robertson L, et al. Medical complications after stroke: a multicenter study. Stroke. 2000;31(6):1223–9.

    Article  Google Scholar 

  34. Masiero S, Avesani R, Armani M, Verena P, Ermani M. Predictive factors for ambulation in stroke patients in the rehabilitation setting: a multivariate analysis. Clin Neurol Neurosurg. 2007;109:763–9.

    Article  Google Scholar 

  35. Matano A, Iosa M, Guariglia C, Pizzamiglio L, Paolucci S. Does outcome of neuropsychological treatment in patients with unilateral spatial neglect after stroke affect functional outcome? Eur J Phys Rehabil Med. 2015;51(6):737–43.

    Google Scholar 

  36. Mizuike C, Ohgi S, Morita S. Analysis of stroke patient walking dynamics using a tri-axial accelerometer. Gait Posture. 2009;30:60–4.

    Article  Google Scholar 

  37. Morasso, P., Casadio, M., Giannoni, P., Masia, L., Sanguineti, V., Squeri, et al. Desirable features of a “humanoid” robot-therapist. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:2418–21.

    Google Scholar 

  38. Morone G, Bragoni M, Iosa M, et al. Who may benefit from robotic-assisted gait training? a randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair. 2011;25(7):636–44.

    Article  Google Scholar 

  39. Morone G, Iosa M, Bragoni M, et al. Who may have durable benefit from robotic gait training? a 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke. 2012;43(4):1140–2.

    Article  Google Scholar 

  40. Morone G, Iosa M, Pratesi L, Paolucci S. Can overestimation of walking ability increase the risk of falls in people in the subacute stage after stroke on their return home? Gait Posture. 2014;39(3):965–70.

    Article  Google Scholar 

  41. Morone G, Paolucci S, Mattia D, Pichiorri F, Tramontano M, Iosa M. The 3Ts of the new millennium neurorehabilitation gym: therapy, technology, translationality. Expert Rev Med Devices. 2016;13(9):785–7. https://doi.org/10.1080/17434440.2016.1218275.

    Article  Google Scholar 

  42. Paolucci S, Antonucci G, Pratesi L, Traballesi M, Lubich S, Grasso MG. Functional outcome in stroke inpatient rehabilitation: predicting no, low and high response patients. Cerebrovasc Dis. 1998;8(4):228–34.

    Google Scholar 

  43. Paolucci S, Bragoni M, Coiro P, et al. Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ischemic stroke patients: a multivariate study. Cerebrovasc Dis. 2008;26(1):16–22.

    Article  Google Scholar 

  44. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015;77(5):851–65. https://doi.org/10.1002/ana.24390.

    Article  Google Scholar 

  45. Pollock A, Baer G, Pomeroy V, Langhorne P. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst Rev. 2007;(1):CD001920. Review. Update in: Cochrane Database Syst Rev. 2014;4:CD001920.

    Google Scholar 

  46. Preston E, Ada L, Dean CM, Stanton R, Waddington G. What is the probability of patients who are nonambulatory after stroke regaining independent walking? a systematic review. Int J Stroke. 2011;6(6):531–40.

    Article  Google Scholar 

  47. Reed ES. Encountering the world: toward an ecological psychology. New York: Oxford University Press; 1996.

    Google Scholar 

  48. Ruchinskas RA, Singer HK, Repetz NK. Cognitive status and ambulation in geriatric rehabilitation: walking without thinking? Arch Phys Med Rehabil. 2000;81:1224–8.

    Article  Google Scholar 

  49. Smania N, Gandolfi M, Paolucci S, Iosa M, Ianes P, Recchia S, Giovanzana C, Molteni F, Avesani R, Di Paolo P, Zaccala M, Agostini M, Tassorelli C, Fiaschi A, Primon D, Ceravolo MG, Farina S. Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke: a multicenter trial. Neurorehabil Neural Repair. 2012;26(9):1035–45. https://doi.org/10.1177/1545968312446003.

  50. Spoor F, Wood B, Zonneveld F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature. 1994;369(6482):645–8.

    Article  Google Scholar 

  51. Tilson JK, Wu SS, Cen SY, et al. Characterizing and identifying risk for falls in the leaps study: a randomized clinical trial of interventions to improve walking post-stroke. Stroke. 2012;43(2):446–52.

    Article  Google Scholar 

  52. Tramontano M, Morone G, Curcio A, Temperoni G, Medici A, Morelli D, Caltagirone C, Paolucci S, Iosa M. Managing the mantainment of gait stability during dual walking task: effects of age and neurological disorders. Eur J Phys Rehabil Med. 2016.

    Google Scholar 

  53. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    Article  Google Scholar 

  54. Wu CY, Chang KC. Constraint-induced movement therapy translated into practice. Lancet Neurol. 2015;14(9):869–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Morone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morone, G., Iosa, M., Paolucci, S. (2018). Rehabilitation Approach to Stroke. In: Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A. (eds) Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72736-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72735-6

  • Online ISBN: 978-3-319-72736-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics