Skip to main content

Relaxation Processes in Liquids and Glass-Forming Systems: What Can We Learn by Comparing Neutron Scattering and Dielectric Spectroscopy Results?

  • Chapter
  • First Online:
The Scaling of Relaxation Processes

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

In this chapter, we first introduce the main concepts related to quasielastic neutron scattering (QENS) techniques and the way they can be connected to dielectric spectroscopy (DS). This is not obvious, because they access different correlation functions. The dielectric permittivity measured by DS reflects the orientational dynamics of the molecular dipoles in a very broad temperature/frequency range, while, thanks to the transfer of energy (\(\hbar \omega \)) and momentum (\(\hbar Q\)) dependence of the measured intensities, QENS provides information about nuclear positions with space/time resolution. In particular, QENS on protonated samples follows the self-correlation function of the hydrogens. Next, we describe the general findings from both techniques relative to the \(\alpha \)-relaxation in glass-forming systems. From the comparison of the results, we define a Q-value (\(Q^\star \)) at which the timescale of the \(\alpha \)-process measured by QENS and DS become similar and compile its values from the literature for diverse systems ranging from polymers and low-molecular weight glass-forming systems to water and water solutions. The results are discussed in a phenomenological way in terms of structural and dynamic parameters. Thereafter, we show that in the case of a simple diffusive process, a simple approach based on molecular hydrodynamics and a molecular treatment of DS allows expressing \(Q^\star \) in terms of a many-body magnitude—a generalized Kirkwood parameter —and a single-molecule magnitude—the hydrodynamic radius. The application of these ideas to liquid water and water solutions is presented. Finally, we explore the possibility of extending this kind of treatment to the more complex subdiffusive case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://neutronsources.org/

  2. Alegría A, Goitiandía L, Tellería I, Colmenero J (1998) Recent Res Dev Macromol Res 3:49

    Google Scholar 

  3. Alegría A, Colmenero J, Mari PO, Campbell IA (1999) Phys Rev E 59:6888

    Article  Google Scholar 

  4. Alvarez F, Alegría A, Colmenero J (1991) Phys Rev B 44:7306

    Article  CAS  Google Scholar 

  5. Alvarez F, Arbe A, Colmenero J, Zorn R, Richter D (2002) Comput Mat Sci 25:596

    Article  CAS  Google Scholar 

  6. Alvarez F, Colmenero J, Zorn R, Willner L, Richter D (2003) Macromolecules 36:238

    Article  CAS  Google Scholar 

  7. Angell C (1997) Complex Behavior of Glassy Systems, vol 402. Springer Verlag, Heidelberg, Lecture Notes in Physics

    Google Scholar 

  8. Angell CA (1995) Science 267:1924

    Google Scholar 

  9. Arbe A, Colmenero J (2009) Phys Rev E 80:041805

    Google Scholar 

  10. Arbe A, Alegría A, Alvarez F, Colmenero J, Frick B (1993) Dynamics of the \(\alpha \)-relaxation in glass-forming polymeric systems. Steinkopff, Darmstadt, Study by neutron scattering and relaxation techniques, p 24

    Google Scholar 

  11. Arbe A, Richter D, Colmenero J, Farago B (1996) Phys Rev E 54:3853

    Article  CAS  Google Scholar 

  12. Arbe A, Colmenero J, Monkenbusch M, Richter D (1998) Phys Rev Lett 81:590

    Article  CAS  Google Scholar 

  13. Arbe A, Alegría A, Colmenero J, Hoffmann S, Willner L, Richter D (1999) Macromolecules 32:7572

    Article  CAS  Google Scholar 

  14. Arbe A, Colmenero J, Alvarez F, Monkenbusch M, Richter D, Farago B, Frick B (2002a) Phys Rev Lett 89:245701

    Google Scholar 

  15. Arbe A, Moral A, Alegría A, Colmenero J, Pyckhout-Hintzen W, Richter D, Farago B, Frick B (2002b) J Chem Phys 117:1336

    Article  CAS  Google Scholar 

  16. Arbe A, Colmenero J, Alvarez F, Monkenbusch M, Richter D, Farago B, Frick B (2003a) Phys Rev E 67:051802

    Google Scholar 

  17. Arbe A, Colmenero J, Richter D (2003b) Broadband Dielectric Spectroscopy. Springer, Berlin

    Google Scholar 

  18. Arbe A, Genix AC, Colmenero J, Richter D, Fouquet P (2008) Soft Matter 4:1792

    Article  CAS  Google Scholar 

  19. Arbe A, Malo de Molina P, Alvarez F, Frick B, Colmenero J (2016) Phys Rev Lett 117:185501

    Google Scholar 

  20. Arrese-Igor S, Alegría A, Colmenero J (2014a) Phys Rev Lett 113:078302

    Google Scholar 

  21. Arrese-Igor S, Alegría A, Colmenero J (2014b) ACS Macro Lett 3:1215

    Article  CAS  Google Scholar 

  22. Arrese-Igor S, Alegría A, Colmenero J (2015) J Chem Phys 142:214504

    Google Scholar 

  23. Arrese-Igor S, Alegría A, Colmenero J (2017) J Chem Phys 146:114502

    Google Scholar 

  24. Bagchi B (2012) Molecular Relaxations in Liquids. Oxford University Press

    Google Scholar 

  25. Bagchi B, Chandra A (1991) Adv Chem Phys 80:1

    CAS  Google Scholar 

  26. Bako I, Grosz T, Palinkas G, Bellissent-Funel MC (2003) J Chem Phys 118:3215

    Article  CAS  Google Scholar 

  27. Bartsch E, Debus O, Fujara F, Kiebel M, Sillescu H, Petry W (1991) Ber Bunsen Phys Chem 95:1146

    Article  CAS  Google Scholar 

  28. Bartsch E, Bertagnolli H, Chieuxp P, David A, Sillescu H (1993) Chem Phys 169:373

    Article  CAS  Google Scholar 

  29. Beiner M (2001) Macromol Rap Commun 22:869

    Article  Google Scholar 

  30. Bhowmik D, Pomposo JA, Juranyi F, García Sakai V, Zamponi M, Arbe A, Colmenero J (2014) Macromolecules 47:93005

    Google Scholar 

  31. Böhmer R, Gainaru C, Richert R (2014) Phys Rep 545:125

    Article  CAS  Google Scholar 

  32. Braun D, Boresch S, Steinhauser O (2014a) J Chem Phys 140:064107

    Google Scholar 

  33. Brodeck M, Alvarez F, Arbe A, Juranyi F, Unruh T, Holderer O, Colmenero J, Richter D (2009) J Chem Phys 130:094908

    Google Scholar 

  34. Buchanan M (1996) Nature 382:302

    Article  CAS  Google Scholar 

  35. Busselez R, Lefort R, Guendouz M, Frick B, Merdrignac-Conanec O, Morineau D (2009) J Chem Phys 130:214502

    Google Scholar 

  36. Busselez R, Arbe A, Alvarez F, Colmenero J, Frick B (2011a) J Chem Phys 134:054904

    Google Scholar 

  37. Busselez R, Lefort R, Ghoufi A, Beuneu B, Frick B, Affouard F, Morineau D (2011b) J Phys Condens Matter 23:505102

    Google Scholar 

  38. Busselez R, Arbe A, Cerveny S, Capponi S, Colmenero J, Frick B (2012) J Chem Phys 137:084902

    Google Scholar 

  39. Capponi S, Arbe A, Alvarez F, Colmenero J, Frick B, Embs JP (2009) J Chem Phys 131:204901

    Google Scholar 

  40. Capponi S, Arbe A, Cerveny S, Busselez R, Frick B, Embs JP, Colmenero J (2011) J Chem Phys 134:204906

    Google Scholar 

  41. Cerveny S, Alegría A, Colmenero J (2008) Phys Rev E 77:031803

    Google Scholar 

  42. Colmenero J, Arbe A (1998) Phys Rev B 57:13508

    Google Scholar 

  43. Colmenero J, Alegría A, Alberdi JM, Alvarez F, Frick B (1991) Phys Rev B 44:7321

    Article  CAS  Google Scholar 

  44. Colmenero J, Alegría A, Arbe A, Frick B (1992) Phys Rev Lett 69:478

    Article  CAS  PubMed  Google Scholar 

  45. Colmenero J, Arbe A, Alegría A (1994) J Non-Cryst Solids 172–174:126

    Article  Google Scholar 

  46. Colmenero J, Arbe A, Coddens G, Frick B, Mijangos C, Reinecke H (1997) Phys Rev Lett 78:1928

    Article  CAS  Google Scholar 

  47. Colmenero J, Arbe A, Alegría A, Monkenbusch M, Richter D (1999) J Phys Condens Matter 11:A363

    Article  CAS  Google Scholar 

  48. Colmenero J, Alvarez F, Arbe A (2002) Phys Rev E 65:041804

    Google Scholar 

  49. Colmenero J, Arbe A, Alvarez F, Narros A, Richter D (2004) Pramana-J Phys 63:25

    Article  Google Scholar 

  50. Colmenero J, Alvarez F, Khairy Y, Arbe A (2013a) J Chem Phys 139:044906

    Google Scholar 

  51. Colmenero J, Brodeck M, Arbe A, Richter D (2013b) Macromolecules 46:1678

    Article  CAS  Google Scholar 

  52. Colmenero J, Alvarez F, Arbe A (2015) EPJ Web of Conferences 83:01001

    Google Scholar 

  53. Davidson DW, Cole RH (1950) J Chem Phys 18:1417

    Article  CAS  Google Scholar 

  54. Davidson DW, Cole RH (1951) J Chem Phys 19:1484

    Article  CAS  Google Scholar 

  55. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  56. Farago B, Arbe A, Colmenero J, Faust R, Buchenau U, Richter D (2002) Phys Rev E 65:051803

    Google Scholar 

  57. Frick B, Richter D, Ritter C (1989) Europhys Lett 9:557

    Article  CAS  Google Scholar 

  58. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  59. Gambino T, Alegría A, Arbe A, Colmenero J, Malicki N, Dronet S, Schnell B, Lohstroh W, Nemkovski K Macromolecules submitted

    Google Scholar 

  60. Genix AC, Arbe A, Alvarez F, Colmenero J, Farago B, Wischnewski A, Richter D (2006a) Macromolecules 39:6260

    Article  CAS  Google Scholar 

  61. Genix AC, Arbe A, Alvarez F, Colmenero J, Schweika W, Richter D (2006b) Macromolecules 39:3947

    Article  CAS  Google Scholar 

  62. Genix AC, Arbe A, Colmenero J, Wuttke J, Richter D (2012) Macromolecules 45:2522

    Article  CAS  Google Scholar 

  63. Gerstl C, Brodeck M, Schneider GJ, Su Y, Allgaier J, Arbe A, Colmenero J, Richter D (2012a) Macromolecules 45:7293

    Article  CAS  Google Scholar 

  64. Gerstl C, Schneider GJ, Fuxman A, Zamponi M, Frick B, Seydel T, Koza M, Genix AC, Allgaier J, Richter D, Colmenero J, Arbe A (2012b) Macromolecules 45:4394

    Article  CAS  Google Scholar 

  65. Gilroy KS, Phillips WA (1981) Philos Mag B 43:5735

    Google Scholar 

  66. Glarum S (1960) J Chem Phys 33:1371

    Article  CAS  Google Scholar 

  67. Götze W, Sjögren L (1992) Rep Prog Phys 55:241

    Article  Google Scholar 

  68. Gurevich VL, Parshin DA, Pelous J, Schober HR (1993) Phys Rev B 48:16318

    Google Scholar 

  69. Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) J Chem Phys 107:1086

    Article  CAS  Google Scholar 

  70. Havriliak S, Negami S (1967) Polymer 8:161

    Article  CAS  Google Scholar 

  71. Hofmann A, Alegría A, Colmenero J, Willner L, Buscaglia E, Hadjichristidis N (1996) Macromolecules 29:129

    Article  CAS  Google Scholar 

  72. Iradi I, Alvarez F, Colmenero J, Arbe A (2004) Physica B Condens Matter 350:E881

    Article  CAS  Google Scholar 

  73. Jansson H, Kargl F, Fernandez-Alonso F, Swenson J (2009) J Chem Phys 130:205101

    Google Scholar 

  74. Khairy Y, Alvarez F, Arbe A, Colmenero J (2014) Macromolecules 47:447

    Article  CAS  Google Scholar 

  75. Kohlrausch F (1863) Pogg Ann Phys Chem 119:337

    Article  Google Scholar 

  76. Krygier E, Lin G, Mendes J, Mukandela G, Azar D, Jones AA, Pathak JA, Colby RH, Kumar SK, Floudas G, Krishnamoorti R, Faust R (2005) Macromolecules 38:7721

    Article  CAS  Google Scholar 

  77. Laurati M, Sotta P, Long DR, Fillot LA, Arbe A, Alegría A, Embs JP, Unruh T, Schneider GJ, Colmenero J (2012) Macromolecules 45:1676

    Article  CAS  Google Scholar 

  78. Lovesey SW (1984) Theory of neutron scattering from condensed matter. Clarendon Press, Oxford

    Google Scholar 

  79. Lunkenheimer P, Loidl A (2003) Broadband Dielectric Spectroscopy. Springer, Berlin

    Google Scholar 

  80. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15

    Article  CAS  Google Scholar 

  81. Madden P, Kievelson D (1984) Adv Chem Phys 56:467

    CAS  Google Scholar 

  82. McCrum N, Read B, Williams G (1967) Anelastic. Dielectric Effects in Polymeric Solids, Wiley, London

    Google Scholar 

  83. Metzler R, Klafter J (2000) Phys Rep 339:1

    Article  CAS  Google Scholar 

  84. Mezei F (1980) Neutron Spin Echo, vol 28. Springer-Verlag, Heidelberg, Lecture Notes in Physics

    Book  Google Scholar 

  85. Malo de Molina P, Alvarez F, Frick B, Wildes A, Arbe A, Colmenero J (2017) Phys Chem Chem Phys 19:27739

    Google Scholar 

  86. Montroll EW, Weiss GH (1965) J Math Phys 6:167

    Article  Google Scholar 

  87. Moreno AJ, Arbe A, Colmenero J (2011) Macromolecules 44:1695

    Article  CAS  Google Scholar 

  88. Nee T, Zwanzig R (1970) J Chem Phys 52:6353

    Article  CAS  Google Scholar 

  89. Novikov VN, Sokolov AP (2004) Nature 431:961

    Article  CAS  PubMed  Google Scholar 

  90. Paul W, Baschnagel J (1999) Stochastic Processes. Springer Verlag, Berlin Heidelberg From Physics to Finance

    Google Scholar 

  91. Perez-Aparicio R, Arbe A, Colmenero J, Frick B, Willner L, Richter D, Fetters LJ (2006) Macromolecules 39:1060

    Google Scholar 

  92. Perez-Aparicio R, Arbe A, Alvarez F, Colmenero J, Willner L (2009) Macromolecules 42:8271

    Article  CAS  Google Scholar 

  93. Petry W, Bartsch E, Fujara F, Kiebel M, Sillescu B Hand Farago (1991) Z Phys B Condens Matter 83:175

    Google Scholar 

  94. Powles J (1953) J Chem Phys 21:633

    Article  CAS  Google Scholar 

  95. Richter D, Arbe A, Colmenero J, Monkenbusch M, Farago B, Faust R (1998) Macromolecules 31:1133

    Article  CAS  Google Scholar 

  96. Richter D, Monkenbusch M, Willner L, Arbe A, Colmenero J, Farago B (2004) Europhys Lett 66:239

    Article  CAS  Google Scholar 

  97. Richter D, Monkenbusch M, Arbe A, Colmenero J (2005) Neutron Spin Echo in Polymer Systems, Adv. Polym. Sci., vol 174. Springer Verlag, Berlin Heidelberg, New York

    Google Scholar 

  98. Rouse PEJ (1953) J Chem Phys 21:1272

    Article  CAS  Google Scholar 

  99. Sacristán J, Alvarez F, Colmenero J (2007) Europhys Lett 80:38001

    Google Scholar 

  100. Saiz L, Guardia E, Padro JA (2000) J Chem Phys 113:2814

    Article  CAS  Google Scholar 

  101. Schneider U, Lunkenheimer P, Brand R, Loidl A (1998) J Non-Cryst Solids 235–237:173

    Article  Google Scholar 

  102. Sengwa RJ, Kaur K, Chaudhary R (2000) Polym Int 49:599

    Article  CAS  Google Scholar 

  103. Sobolev O, Novikov A, Pieper J (2007) Chem Phys 334:36

    Article  CAS  Google Scholar 

  104. Sposito G (1981) J Chem Phys 74:6943

    Article  CAS  Google Scholar 

  105. Squires GL (1996) Introduction to the theory of thermal neutron scattering. Dover Publication Inc., New York

    Google Scholar 

  106. Svanberg C, Bergman R (2001) J Non-Cryst Solids 283:225

    Article  CAS  Google Scholar 

  107. Tölle A (2001) Rep Prog Phys 64:1473

    Article  Google Scholar 

  108. Tyagi M (2007) Private commun

    Google Scholar 

  109. Tyagi M, Alegría A, Colmenero J (2005) J Chem Phys 122:244909

    Google Scholar 

  110. Tyagi M, Arbe A, Alvarez F, Colmenero J, González MA (2008) J Chem Phys 129:224903

    Google Scholar 

  111. Vispa A, Rovira-Esteva M, Ruiz-Martín MD, Busch S, Unruh T, Pardo LC, Tamarit JL (2014) J Phys: Conf Series 549:012013

    Google Scholar 

  112. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  113. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

  114. Wuttke J, Chang I, Randl OG, Fujara F, Petry W (1996) Phys Rev E 54:5364

    Article  CAS  Google Scholar 

  115. Wuttke J, Chang I, Fujara F, Petry W (1997) Physica B Condens Matter 234–236:431

    Article  Google Scholar 

  116. Yu D, Hennig M, Mole RA, Li JC, Wheeler C, Strassle T, Kearley GJ (2013) Phys Chem Chem Phys 15:20555

    Google Scholar 

Download references

Acknowledgements

We are indebted to our collaborators in the Polymers and Soft Matter Group in San Sebastian and at the different neutron facilities (Jülich Center for Neutron Science, Institute Laue Langevin, Paul Scherrer Institute, etc.), who helped to shape many of the experiments we report on in this chapter. In particular, we we would like to thank Prof. Angel Alegría and Prof. Dieter Richter for helpful and lively discussions. We acknowledge financial support by the Spanish Ministry ‘Ministerio de Economia y Competitividad,’ code: MAT2015-63704-P (MINECO/FEDER, UE) and by the Basque Government IT-654-13 (GV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Colmenero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arbe, A., Colmenero, J. (2018). Relaxation Processes in Liquids and Glass-Forming Systems: What Can We Learn by Comparing Neutron Scattering and Dielectric Spectroscopy Results?. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_8

Download citation

Publish with us

Policies and ethics