Skip to main content

Maneuvering and Submerged Control System for a Modular Autonomous Underwater Vehicle

  • Chapter
  • First Online:
Engineering Applications for New Materials and Technologies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 85))

  • 1763 Accesses

Abstract

An autonomous underwater vehicle (AUV) is considered a vehicle that can be submerged and autonomously operate underwater, fitted with various systems that include the electrical power supply system, propulsion system, tanks system, maneuvering and submerged control system. All these systems are controlled by an integrated built-in computer system. AUVs, as in the case of submarines, need control surfaces and the associated control systems for maneuvering while being underwater or on the surface. In the current study, rudder blades and hydroplanes made from carbon fiber were designed and installed suitably at stern and forward positions of the AUV. Arduino Mega board (AMB) module and its open technology are used to design the main automation circuit and written source codes for the maneuvering and submerged controlled system. The advantages of the AMB are its flexibility for the simulation using fritzing to test the performance of the system through computerisation of the control system and programmable to meet specified requirements as well as easy in interfacing the software and the hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nickell, C. L.: Modular modification of a buoyant AUV for low-speed operation. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.460.267 (2005)

  2. Miyamoto, S., Aoki, T., Maeda, T., Hirokawa, K., Ichikawa, T., Saitou, T., Iwasaki, S.: Maneuvering Control Syst. Des. Auton Underwater Veh. 1, 482–489 (2001). https://doi.org/10.1109/OCEANS.2001.968771

    Google Scholar 

  3. Fossen, T.I.: Guidance and control of ocean vehicles. https://www.ntnu.edu/employees/thor.fossen. ISBN 0-471-94113-1 (1994)

  4. Fossen, T.I., Smogeli, Ø.N.: Nonlinear time-domain strip theory formulation for low-speed maneuvering and station-keeping. Model. Ident. Control. 25(4), (2004)

    Google Scholar 

  5. Ming, C., Qiang, Z., Sanlong, C.: Control Syst. Des. Auton. Underwater Veh. 1–6, (2006). http://doi.org/10.1109/RAMECH.2006.252736

  6. Ismail, Z.H., Mokhar, M.B.M., Putranti, V.W.E., Dunnigan, M.W.: (A robust dynamic region-based control scheme for an autonomous underwater vehicle. Ocean Eng. 111, 155–165 (2016). https://doi.org/10.1016/j.oceaneng.2015.10.052

    Article  Google Scholar 

  7. Blidberg, D.R., Turner, R.M., Chappell, S.G.: Autonomous underwater vehicles: Current activities and research opportunities. Robot. Auton. Syst. 7, 139–150 (1991)

    Article  Google Scholar 

  8. Evans, J., Nahon, M.: Dynamics modeling and performance evaluation of an autonomous underwater vehicle. Ocean Eng. 31, 1835–1858 (2004)

    Article  Google Scholar 

  9. Huggins, A., Packwood, A.R.: The optimum dimensions for a long-range, autonomous, deep-diving, underwater vehicle for oceanographic research. Ocean Eng. 21, 45–56 (1994)

    Article  Google Scholar 

  10. Jun, B.H., Park, J.Y., Lee, F.Y., Lee, P.M., Lee, C.M., Kim, K., Lim, Y.K., Oh, J.H.: Development of the AUV ‘ISiMI’ and a free running test in an Ocean engineering basin. Ocean Eng. 36, 2–14 (2009)

    Article  Google Scholar 

  11. Stevenson, P., Furlong, M., Dormer, D.: AUV design—shape, drag and practical issues. Sea Technol. 50(1), 41–44, 1 Jan (2009)

    Google Scholar 

  12. Phillips, A., Furlong, M., Turnock, S. R.: The use of computational fluid dynamics to determine the dynamic stability of an autonomous underwater vehicle. In: 10th Numerical Towing Tank Symposium (NuTTS’07), Hamburg, Germany, pp. 23–25, 2007

    Google Scholar 

  13. Abrebekooh, Y.N., Rad, M.: Experimental and numerical investigation of drag force over tubular frustum. Scientia Iranica 18(5), 1133–1137 (2011)

    Article  Google Scholar 

  14. Kumar, R.P., Dasgupta, A., Kumar, C.S.: Real-time optimal motion planning for autonomous underwater vehicles. Ocean Eng. 32, 1431–1447 (2005)

    Article  Google Scholar 

  15. Fernandes, P.G., Stevenson, P., Brierley, A.S., Armstrong, F., Simmonds, E.J.: Autonomous underwater vehicles: future platforms for fisheries acoustics. ICES J. Mar. Sci. 60, 684–691 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamid Salih Noorazlina .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Arduino Mega Board Coding

//56266212266  #include  <Servo.h>   #define maximumRange 4500  #define minimumRange 5  Servo myservo;  Servo myservo2;  Servo myservo3;  const int trigPin  =  44;  const int echoPin  =  46;  long duration, inches, cm;  unsigned long time;  unsigned int msecs, secs, mins;  int bal, flag, angle, obstacle, detect;  int motion []  =  {90,180,90,0};  int motion_pointer = 0;  int a  =  0;  int j  = 0;  int OutOfRange  =  0;  int Get_Sonar()  pinMode(trigPin, OUTPUT);  digitalWrite(trigPin, LOW);  delayMicroseconds(2);  digitalWrite(trigPin, HIGH);  delayMicroseconds(10);  digitalWrite(trigPin, LOW);  pinMode(echoPin, INPUT);  duration  =  pulseIn(echoPin, HIGH);  inches  =  microsecondsToInches(duration);  cm  =  microsecondsToCentimeters(duration);  Serial.print(“Range  =  ”);  Serial.print(cm);  myservo3.write(90);  myservo2.write(90);  void loop()  Serial.print(“cm”);  Serial.println();  if (cm < 100) {  obstacle  =  1;  else {  obstacle  =  0;  return obstacle;  long microsecondsToInches(long microseconds)  return microseconds / 74 / 2;  long microsecondsToCentimeters(long microseconds)  return microseconds / 29 / 2;      }     void loop()      {       Serial.println(“---------------------------”);       detect  =  Get_Sonar();       if (detect  == 1) {         myservo2.write(120);         //delay (1000);       }       else {         myservo2.write(90);         //delay (1000);       }        time  =  millis(); //prints time since program started        bal  =  time/1000;        delay(1000); // wait a second so as not to send massive amounts of data        Serial.print(“Seconds  =  ”);        Serial.println(bal);           flag  =  bal%20;        //Serial.print(“Flag  =  ”);        //Serial.println(flag);         if (flag  == 0) {          angle  =  pointer_motion(a);          Serial.print(“Angle  =  ”);          Serial.println(angle);          myservo.write(angle);          myservo3.write(angle);           //delay(2000);     }        //Serial.print(“---------------------------”);        //Serial.print(); } int pointer_motion(int x) {    int motion []  =  {60,90,60,90};    //int j;    if (j < 3) { //depend on motion[] size-1      j  =  j + 1;     x  =  motion[j];     //j ++;     return x;   }    else {     j = 0;     return motion[j];   } }

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noorazlina, M.S., Kamil, M.S., Hashim, M.A., Jamil, N., Johor, H. (2018). Maneuvering and Submerged Control System for a Modular Autonomous Underwater Vehicle. In: Öchsner, A. (eds) Engineering Applications for New Materials and Technologies . Advanced Structured Materials, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-319-72697-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72697-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72696-0

  • Online ISBN: 978-3-319-72697-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics