Skip to main content
  • 1421 Accesses

Abstract

We compare the average errors of n-term linear and nonlinear approximations assuming that the coefficients in an orthogonal expansion of the approximated element are scaled i.i.d. random variables. We show that generally the n-term nonlinear approximation can be even exponentially better than the n-term linear approximation. On the other hand, if the scaling parameters decay no faster than polynomially then the average errors of nonlinear approximations do not converge to zero faster than those of linear approximations, as nā€‰ā†’ā€‰+āˆž. The main motivation and application is the approximation of Gaussian processes. In this particular case, the nonlinear approximation is, roughly, no more than n times better than its linear counterpart.

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word ā€˜adaptiveā€™ here means that the removed components depend on x.

  2. 2.

    For two positive sequences, we write a nā€‰ā‰ā€‰b n iff there are 0ā€‰<ā€‰cā€‰<ā€‰Cā€‰<ā€‰+āˆž and n 0 such that cā€‰ā‰¤ā€‰a nāˆ•b nā€‰ā‰¤ā€‰C holds for all nā€‰ā‰„ā€‰n 0. We write a nā€‰ā‰ˆā€‰b n iff limnā†’+āˆža nāˆ•b nā€‰=ā€‰1.

References

  1. Cioica, P.A., Dahlke, S., Dƶhring, N., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: Adaptive wavelet methods for the stochastic Poisson equation. BIT Numer. Math. 52, 589ā€“614 (2012)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Cohen, A., Dā€™Ales, J.-P.: Nonlinear approximation of random functions. SIAM J. Appl. Math. 57, 518ā€“540 (1997)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  3. Cohen, A., Daubechies, I., Guleryuz, O.G., Orchard, M.T.: On the importance of combining wavelet-based nonlinear approximation with coding strategies. IEEE Trans. Inf. Theory 48, 1895ā€“1921 (2002)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Creutzig, J., MĆ¼ller-Gronbach, T., Ritter, K.: Free-knot spline approximation of stochastic processes. J. Complexity 23, 867ā€“889 (2007)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  5. DeVore, R.A.: Nonlinear approximation. Acta Numer. 8, 51ā€“150 (1998)

    ArticleĀ  Google ScholarĀ 

  6. DeVore, R.A., Jawerth, B.: Optimal nonlinear approximation. Manuscripta Math. 63, 469ā€“478 (1992)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289ā€“1306 (2006)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Kon, M.A., Plaskota, L.: Information complexity of neural networks. Neural Netw. 13, 365ā€“376 (2000)

    ArticleĀ  Google ScholarĀ 

  9. Kon, M.A., Plaskota, L.: Information-based nonlinear approximation: an average case setting. J. Complexity 21, 211ā€“229 (2005)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, New York (1975)

    Google ScholarĀ 

  11. Plaskota, L.: Noisy Information and Computational Complexity. Cambridge University Press, Cambridge (1996)

    BookĀ  Google ScholarĀ 

  12. Rauhut, H.: Compressive sensing and structured random matrices. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery, vol. 9, pp. 1ā€“92. Walter de Gruyter, Berlin (2012)

    Google ScholarĀ 

  13. Ritter, K.: Average-Case Analysis of Numerical Problems. Springer, Berlin (2000)

    BookĀ  Google ScholarĀ 

  14. Temlyakov, V.N.: Nonlinear methods of approximation. Found. Comput. Math. 3, 33ā€“107 (2003)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Traub, J.F., Wasilkowski, G.W., WoÅŗniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)

    MATHĀ  Google ScholarĀ 

  16. Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability Distributions on Banach Spaces. Kluwer, Dordrecht (1987)

    BookĀ  Google ScholarĀ 

  17. Vybiral, J.: Average best m-term approximation. Constr. Approx. 36, 83ā€“115 (2012)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Plaskota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plaskota, L. (2018). On Linear Versus Nonlinear Approximation in the Average Case Setting. In: Dick, J., Kuo, F., WoÅŗniakowski, H. (eds) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham. https://doi.org/10.1007/978-3-319-72456-0_46

Download citation

Publish with us

Policies and ethics