Skip to main content

Kovacs Effect and the Relation Between Glasses and Supercooled Liquids

  • Chapter
  • First Online:
Many-body Approaches at Different Scales
  • 865 Accesses

Abstract

In this note we revisit the Kovacs effect, concerning the way in which the volume of a glass-forming liquid, which has been driven out of equilibrium, changes with time while the system evolves towards a metastable state. The theoretical explanation of this phenomenon has attracted much interest even in recent years, because of its relation with some subtle aspects of the still elusive nature of the glass transition. In fact, even if there is a rather general consensus on the fact that what is experimentally observed on cooling is the dramatic effect produced by the dynamical arrest of slower degrees of freedom over the experimental time scale, it is not yet clear whether this phenomenology can be justified upon assuming the existence of an underlying (possibly, high order) phase transition at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Biroli, J.P. Garrahan, J. Chem. Phys. 138(12), 12A301 (2013). https://doi.org/10.1063/1.4795539

  2. M.D. Ediger, P. Harrowell, J. Chem. Phys. 137(8), 080901 (2012). https://doi.org/10.1063/1.4747326

  3. W. Kauzmann, Chem. Rev. 43(2), 219 (1948). https://doi.org/10.1021/cr60135a002

  4. P.N. Pusey, W. van Megen, Nature 320(6060), 340 (1986). https://doi.org/10.1038/320340a0

  5. V. Lubchenko, P.G. Wolynes, Ann. Rev. Phys. Chem. 58(1), 235 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104653

  6. F.H. Stillinger, J. Chem. Phys. 88(12), 7818 (1988). https://doi.org/10.1063/1.454295

  7. J.P. Eckmann, I. Procaccia, Phys. Rev. E 78, 011503 (2008). https://doi.org/10.1103/PhysRevE.78.011503

  8. W. van Megen, T.C. Mortensen, S.R. Williams, J. Müller, Phys. Rev. E 58, 6073 (1998). https://doi.org/10.1103/PhysRevE.58.6073

  9. L. Boué, H.G.E. Hentschel, V. Ilyin, I. Procaccia, J. Phys. Chem. B 115(48), 14301 (2011). https://doi.org/10.1021/jp205773c

  10. F. Mallamace, C. Corsaro, N. Leone, V. Villari, N. Micali, S. Chen, 4, 3747 (2014), Scientific Reports. https://doi.org/10.1038/srep03747

  11. P.G. Debenedetti, J. Phys.: Condens. Matter 15(45), R1669 (2003). https://doi.org/10.1088/0953-8984/15/45/R01

  12. H.E. Stanley, P. Kumar, L. Xu, Z. Yan, M.G. Mazza, S.V. Buldyrev, S. Chen, F. Mallamace, Physica A 386(2), 729 (2007), Disorder and Complexity. https://doi.org/10.1016/j.physa.2007.07.044

  13. R.J. Speedy, J. Phys. Chem. 86(6), 982 (1982). https://doi.org/10.1021/j100395a030

  14. O. Mishima, L.D. Calvert, E. Whalley, Nature 314(6006), 76 (1985). https://doi.org/10.1038/314076a0

  15. H.E. Stanley, L. Cruz, S.T. Harrington, P.H. Poole, S. Sastry, F. Sciortino, F.W. Starr, R. Zhang, Physica A 236(1), 19 (1997), Proceedings of the Workshop on Current Problems in Complex Fluids. https://doi.org/10.1016/S0378-4371(96)00429-3

  16. S. Sastry, P.G. Debenedetti, F. Sciortino, H.E. Stanley, Phys. Rev. E 53, 6144 (1996). https://doi.org/10.1103/PhysRevE.53.6144

  17. O. Mishima, H.E. Stanley, Nature 392(6672), 164 (1998). https://doi.org/10.1038/32386

  18. O. Mishima, Y. Suzuki, Nature 419(6907), 599 (2002). https://doi.org/10.1038/nature01106

  19. A.J. Kovacs, Transition vitreuse dans les polymères amorphes. Etude phénoménologique (Springer Berlin Heidelberg, Berlin, Heidelberg), (Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science) 3(3), 394–507 (1964). ISBN 978-3-540-37073-4. https://doi.org/10.1007/BFb0050366

  20. S. Mossa, F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004). https://doi.org/10.1103/PhysRevLett.92.045504

  21. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88(6), 3113 (2000). https://doi.org/10.1063/1.1286035

  22. E. Bouchbinder, J.S. Langer, Soft Matter 6, 3065 (2010). https://doi.org/10.1039/C001388A

  23. S.S. Chang, A.B. Bestul, J. Chem. Phys. 56(1), 503 (1972). https://doi.org/10.1063/1.1676895

  24. M. Naoki, S. Koeda, J. Phys. Chem. 93(2), 948 (1989). https://doi.org/10.1021/j100339a078

  25. J.E.K. Schawe, Thermochimica Acta 260, 1 (1995). https://doi.org/10.1016/0040-6031(95)90466-2

  26. I. Alig, Thermochimica Acta 304, 35 (1997), Temperature Modulated Calorimetry. https://doi.org/10.1016/S0040-6031(97)00174-3

  27. F. Aliotta, P.V. Giaquinta, M. Pochylski, R.C. Ponterio, S. Prestipino, F. Saija, C. Vasi, J. Chem. Phys. 138(18), 184504 (2013). https://doi.org/10.1063/1.4803659

  28. T.M. Nieuwenhuizen, J. Chem. Phys. 115(17), 8083 (2001). https://doi.org/10.1063/1.1399036

  29. H. Hoffmann, Mat.-wiss. u, Werkstofftech. 43(6), 528 (2012). https://doi.org/10.1002/mawe.201200673

  30. F. Aliotta, P.V. Giaquinta, R.C. Ponterio, S. Prestipino, F. Saija, G. Salvato, C. Vasi, 4, 7230 (2014), Article, Scientific Reports. https://doi.org/10.1038/srep07230

  31. C.A. Angell, E.J. Sare, J. Donnella, D.R. MacFarlane, J. Phys. Chem. 85(11), 1461 (1981). https://doi.org/10.1021/j150611a001

Download references

Acknowledgements

The authors belonging to the Institute for Chemical-Physical Processes (IPCF) of the National Research Council (CNR) recall with enthusiasm the visit that Professor N. H. March paid to their institute in 2010. PVG expresses his profound gratitude to Professor March who invited him to visit the Imperial College of Science and Technology in London (UK) and later, on repeated occasions, the Theoretical Chemistry Department of the University of Oxford (UK) in the earlier stages of his post-graduation career. Working with and learning from him has always been an influential, unforgettable experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Giaquinta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aliotta, F., Ponterio, R.C., Saija, F., Giaquinta, P.V. (2018). Kovacs Effect and the Relation Between Glasses and Supercooled Liquids. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_12

Download citation

Publish with us

Policies and ethics