Skip to main content

Does Wetland Biomass Provide an Alternative to Maize in Biogas Generation?

  • Conference paper
  • First Online:
Renewable Energy Sources: Engineering, Technology, Innovation

Abstract

The substantial amount of the agricultural biogas plants is now facing economical problems due to rising operational costs, which force them to quest for the cheaper alternative to silage maize. The aim of the study was to examine the biogas and methane yield of two wetland species: common reed and reed canary grass, and compare it to the biogas productivity of commonly used mixture of maize, poultry manure, and swine manure. In batch assay the methane yield of poultry manure was the highest and reached about 530 NL CH4 kg−1 VS. The methane yield of maize silage was lower and equaled to 435 NL CH4 kg−1 VS. Much lower values were received from reed canary grass and swine manure (204 and 171 NL CH4 kg−1 VS, respectively) and the lowest from common reed (148 NL CH4 kg−1 VS). Due to notably smaller biogas and specific methane yields grasses from landscaping are unlikely to wholly replace maize silage. However, they can be considered as interesting co-substrate, with methane productivity that is comparable to swine manure. Collecting grasses is relatively cheap, as it does not require fertilization and crop protection expenditure, while mowing of biomass can contribute to protection of biodiversity of wetlands and abandoned meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biogas sector statistics 2015/2016. http://www.biogas.org/edcom/webfvb.nsf/idDE_Branchenzahlen/$file/16–07-28_Biogas_Branchenzahlen-2015_Prognose-2016_engl_final.pdf. Last accessed 25 May 2017

  2. URE. Mapa Odnawialnych Źródeł Energii, Urząd Regulacji Energii. http://www.ure.gov.pl/uremapoze/mapa.html. Last accessed 26 May 2017

  3. Podkówka, Z., Podkówka, W.: Substraty dla biogazowni rolniczych. Agro Serwis Biznes-Press sp. z o.o., Warszawa (2010)

    Google Scholar 

  4. Register of energy companies producing agricultural biogas. http://www.arr.gov.pl/data/02004/rejestr_wytworcow_biogazu_rolniczego_17052017.pdf. Last accessed 26 May 2017

  5. Fachagentur Nachwachsende Rohstoffe e.V. (FNR). Bioenergy in Germany facts and figures 2016. FNR 2017, 484, http://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Broschuere_Basisdaten_Bioenergie_englisch_2017.pdf. Last accessed 27 May 2017

  6. Szlachta, J.: Ekspertyza—Możliwości pozyskania biogazu rolniczego jako odnawialnego źródła energii. Instytut Inżynierii Rolniczej UP, Wrocław (2009)

    Google Scholar 

  7. Popp, J., Lakner, Z., Harangi-Rákos, M., Fári, M.: The effect of bioenergy expansion: food, energy, and environment. Renew. Sust. Energ. Rev. 32, 559–578 (2014)

    Article  Google Scholar 

  8. Banaszuk, P., Wysocka-Czubaszek, A., Czubaszek, R., Roj-Rojewski, S.: Skutki energetycznego wykorzystania biomasy, Wieś i Rolnictwo, PAN. Instytut Rozwoju Wsi i Rolnictwa 4(169), 13–152 (2015)

    Google Scholar 

  9. Schorling, M., Enders, C., Voigt, C.A.: Assessing the cultivation potential of the energy crop Miscanthus x giganteus for Germany. GCB Bioenergy 7, 763–773 (2015)

    Article  Google Scholar 

  10. Banaszuk, P., Kamocki, A.: Effects of climatic fluctuations and land-use changes on the hydrology of temperate fluviogenous mire. Ecol. Eng. 32, 33–146 (2008)

    Article  Google Scholar 

  11. Raposo, F., Fernández-Cegrí, V., de la Rubia, M.A., Borja, R., Béline, F., Cavinato, C., Demirer, G., Fernández, B., Fdz-Polanco, M., Frigon, J.C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I., de Wilde, V.: Biochemicalmethane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86(8), 1088–1098 (2011)

    Article  Google Scholar 

  12. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas Handbook. University of Southern Denmark, Esbjerg (2008)

    Google Scholar 

  13. Seppälä, M., Paavola, T., Lehtomäki, A., Rintala, J.: Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresour. Technol. 100, 2952–2958 (2009)

    Article  Google Scholar 

  14. Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W.: Biochemical methane potential of biomass and waste feedstock. Biomass Bioenergy 5(1), 95–111 (1993)

    Article  Google Scholar 

  15. Triolo, J.M., Sommer, S.G., Møller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395–9402 (2011)

    Article  Google Scholar 

  16. Oleszek, M., Król, A., Tys, J., Matyka, M., Kulik, M.: Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 156, 303–306 (2014)

    Article  Google Scholar 

  17. Massé, D., Gilbert, Y., Savoie, P., Bélanger, G., Parent, G., Babineau, D.: Methane yield from switchgrass and reed canarygrass grown in Eastern Canada. Bioresour. Technol. 102, 10286–10292 (2011)

    Article  Google Scholar 

  18. APHA.: Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC (1998)

    Google Scholar 

  19. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010)

    Article  Google Scholar 

  20. Parkin, G.F., Owen, W.F.: Fundamentals of anaerobic-digestion of waste-water sludges. J. Environ. Eng. ASCE 112(5), 867–920 (1986)

    Article  Google Scholar 

  21. Weiland, P.: State of the art of solid-state digestion—recent developments. In: Rohstoffe, F.N. (ed.) Solid-State Digestion—State of the Art and Further R&D Requirements, vol. 24, pp. 22–38. Gulzower Fachgespräche, (2006)

    Google Scholar 

  22. Pang, Y.Z., Liu, Y.P., Li, X.J., Wang, K.S., Yuan, H.R.: Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energ. Fuel 22(4), 2761–2776 (2008)

    Article  Google Scholar 

  23. Podkówka, W.: Biogaz rolniczy odnawialne źródło energii. Teoria i praktyczne zastosowanie. Powszechne Wydawnictwo Rolnicze i Leśne, Warszawa (2012)

    Google Scholar 

  24. Weiland, P.: Grundlagen der Methangärung-Biologie und substrate. In: Biogas als regenerative Energie-Stand und Perspektiven; Tagung. 19–20 Juni, Hanover (2001)

    Google Scholar 

  25. Effenberger, M., Lebuhn, M.: Methangärung—die Belastungsgrenzen erkennen. Mais Special. Biogas, pp. 4–7 (2008)

    Google Scholar 

  26. Fachagentur Nachwachsende Rohstoffe e.V (FNR). Handreichung Biogasgewinnung und—nutzung. Institut fur Energetik und Umwelt gGmbH. FNR 2006, Gülzow. http://www.big-east.eu/downloads/FNR_HR_Biogas.pdf. Last accessed 2017/06/05

  27. Amon, T., Kryvoruchko, V., Amon, B., Moitzi, G., Buga, S., Fistarol Lyson, D., Hackl, E., Jeremic, D.: Biogas production from the energy crops maize and clover grass. Final Report No. 1249 GZ 24.002/59-IIA1/01 to the Austrian Federal Ministry of Agriculture and Environment. University of Natural Resources and Life Sciences, Vienna (2003)

    Google Scholar 

  28. Jagadabhi, P.S., Kaparaju, P., Rintala, J.: Two-stage anaerobicdigestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresour. Technol. 102, 4726–4733 (2011)

    Article  Google Scholar 

  29. Lehtomäki, A., Viinikainen, T.A., Rintala, J.A.: Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 32, 541–550 (2008)

    Article  Google Scholar 

  30. Lemmer, A., Oechsner, H.: Einsatz von Mähgut landwirtschaftlich nicht genutzter Flächen als Kosubstrat in landwirtschaftlichen Biogasanlagen. Tagungsband zur 5. Internationalen Tagung Bau, Technik und Umwelt in der landwirtschaftlichen Nutztierhaltung. Hohenheim, 398–401 (2001)

    Google Scholar 

  31. Amon, T., Bodiroza, V., Kryvoruchko, V., Machmüller, A., Bauer, A.: Energetische Nutzung von Schilfgras von extensiven Naturschutzflächen des Nationalparks Neusiedler See und Makrophyten des Neusiedler Sees. Research Report, Vienna (2007)

    Google Scholar 

  32. Raposo, F., Banks, C.J., Siegert, I., Heaven, S., Borja, R.: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41, 1444–1450 (2006)

    Article  Google Scholar 

  33. Braun, R.: Anaerobic digestion—a multi faceted process for energy, environmental management and rural development. In: Ranalli, P. (ed.) Improvement of Crop Plants for Industrial End Users. Springer, Berlin (2007)

    Google Scholar 

  34. Gizińska-Górna, M., Czekała, W., Józwiakowski, J., Lewicki, A., Dach, J., Marzec, M., Pytka, A., Janczak, D., Kowalczyk-Jusko, A., Listosz, A.: The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 95, 534–541 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ministry of Science and Higher Education as a part of the project S/WBiIŚ/1/17, Bialystok University of Technology, Bialystok, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Roj-Rojewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roj-Rojewski, S., Wysocka-Czubaszek, A., Czubaszek, R., Banaszuk, P. (2018). Does Wetland Biomass Provide an Alternative to Maize in Biogas Generation?. In: Mudryk, K., Werle, S. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-72371-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72371-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72370-9

  • Online ISBN: 978-3-319-72371-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics