Skip to main content

Angluin Learning via Logic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10703))

Included in the following conference series:

Abstract

In this paper we will provide a fresh take on Dana Angluin’s algorithm for learning using ideas from coalgebraic modal logic. Our work opens up possibilities for applications of tools & techniques from modal logic to automata learning and vice versa. As main technical result we obtain a generalisation of Angluin’s original algorithm from DFAs to coalgebras for an arbitrary finitary set functor T in the following sense: given a (possibly infinite) pointed T-coalgebra that we assume to be regular (i.e. having an equivalent finite representation) we can learn its finite representation by asking (i) “logical queries” (corresponding to membership queries) and (ii) making conjectures to which the teacher has to reply with a counterexample. This covers (a known variant) of the original L* algorithm and the learning of Mealy/Moore machines. Other examples are bisimulation quotients of (probabilistic) transition systems.

Supported by EPSRC grant EP/N015843/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Readers should think of “behavioural equivalence” as a general notion of bisimilarity. In all concrete examples in this paper both notions of equivalence coincide.

  2. 2.

    Instead, we could use triples \((S,\varSigma ,\models _S)\) to be in line with [6] but we decided to leave the third “bookkeeping” component implicit.

References

  1. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge Tracts in TCS. Cambridge University Press, New York (2016)

    MATH  Google Scholar 

  2. Jacobs, B., Silva, A.: Automata learning: a categorical perspective. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 384–406. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06880-0_20

    Chapter  Google Scholar 

  3. van Heerdt, G.: An abstract automata learning framework. Master’s thesis, Radboud Universiteit Nijmegen (2016)

    Google Scholar 

  4. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nominal automata. In: POPL 2017 (2017)

    Google Scholar 

  5. van Heerdt, G., Sammartino, M., Silva, A.: Learning automata with side-effects. CoRR abs/1704.08055 (2017)

    Google Scholar 

  6. Angluin, D.: Learning regular sets from queries and counter examples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Logical Methods Comput. Sci. 9(3) (2013)

    Google Scholar 

  8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4

    MATH  Google Scholar 

  9. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, New York (1971). https://doi.org/10.1007/978-1-4757-4721-8

    Book  MATH  Google Scholar 

  10. Jacobs, B., Rutten., J.: An introduction to (co)algebras and (co)induction. In: Advanced Topics in Bisimulation and Coinduction. Cambridge Tracts in Theoretical Computer Science, vol. 5, pp. 38–99. Cambridge University Press (2011)

    Google Scholar 

  11. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  12. Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. Comput. J. 54(1), 31–41 (2009)

    Article  Google Scholar 

  13. Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview. Theoret. Comput. Sci. 412(38), 5070–5094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theoret. Comput. Sci. 390(2), 230–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hansen, H.H., Rutten, J.J.M.M.: Symbolic synthesis of mealy machines from arithmetic bitstream functions. Sci. Ann. Comp. Sci. 20, 97–130 (2010)

    MathSciNet  Google Scholar 

  16. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov processes. Inf. Comput. 179(2), 163–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kupke, C., Leal, R.A.: Characterising behavioural equivalence: three sides of one coin. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 97–112. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2_8

    Chapter  Google Scholar 

  18. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  19. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118(2), 316–326 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Balle, B., Castro, J., Gavald, R.: Learning probabilistic automata: a study in state distinguishability. TCS 473, 46–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning probabilistic automata for model checking. In: 2011 Eighth International Conference on Quantitative Evaluation of Systems, pp. 111–120 (2011)

    Google Scholar 

  22. Tzeng, W.G.: Learning probabilistic automata and markov chains via queries. Mach. Learn. 8(2), 151–166 (1992)

    MATH  Google Scholar 

  23. Sokolova, A.: Probabilistic systems coalgebraically: a survey. TCS 412(38), 5095–5110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glück, R., Möller, B., Sintzoff, M.: Model refinement using bisimulation quotients. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 76–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_5

    Chapter  Google Scholar 

  25. Ghilardi, S.: Continuity, freeness, and filtrations. J. Appl. Non Class. Logics 20(3), 193–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bezhanishvili, G., Bezhanishvili, N., Iemhoff, R.: Stable canonical rules. J. Symbol. Logic 81(1), 284–315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nick Bezhanishvili and Alexandra Silva for helpful discussions and pointers to the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Kupke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barlocco, S., Kupke, C. (2018). Angluin Learning via Logic. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2018. Lecture Notes in Computer Science(), vol 10703. Springer, Cham. https://doi.org/10.1007/978-3-319-72056-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72056-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72055-5

  • Online ISBN: 978-3-319-72056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics