Skip to main content

Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Models

  • Chapter
Dynamic Neuroscience

Abstract

Human neuroscience is becoming more common as noninvasive imaging modalities are being developed and used by researchers. A challenge that comes with humans as they execute structured tasks is that their behaviors often are shaped not only by external stimuli presented by the experimentalist but also by internal states that are not easily measurable. This presents a problem if one is trying to identify neural correlates of specific stimuli as brain activity is also modulated by these dynamic internal states. An example of this is when humans perform gambling tasks. Their betting strategies may fluctuate based on how “lucky” they feel, which is not directly measurable but clearly shapes behavior and neural activity. In this chapter, we propose a systematic framework for (1) characterizing variability within and across individual behavior performing a task by estimating internal latent states that affect behavior, and (2) identifying neural correlates of stimuli, responses, and states. The framework consists of first constructing state-space models from behavioral data using maximum likelihood methods, and then identifying neural correlates of external stimuli, behavioral responses, and internal states using nonparametric statistical tests and point process models. The framework is general in that all types of behavioral data are possible to model (e.g., binary, categorical, continuous) and all types of neural activity are possible to analyze (spike trains, local field potentials, electroencephalogram, functional magnetic resonance imaging, etc.). The methods for modeling and statistical tests presented in this chapter are not new. Rather, we propose a systematic approach to analyzing complex data sets generated by neuroscience experiments with human subjects, highlight challenges that may arise, and propose solutions to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, R., Thakor, N. V., Sarma, S. V., & Massaquoi, S. G. (2015). PMv neuronal firing may be driven by a movement command trajectory within multidimensional Gaussian fields. Journal of Neuroscience, 35(25), 9508–9525.

    Article  Google Scholar 

  • Brown, E. N., Barbieri, R., Eden, U. T., & Frank, L. M. (2003). Likelihood methods for neural spike train data analysis. In J. Feng (Ed.), Computational neuroscience: A comprehensive approach, Chap. 9 (pp. 253–286). London: Chapman & Hall/CRC.

    Google Scholar 

  • Carpenter, A. F., Georgopoulos, A. P., & Pellizzer, G. (1999). Motor cortical encoding of serial order in a context-recall task. Science, 283(5408), 1752–1757.

    Article  Google Scholar 

  • Coleman, T., & Sarma, S. (2007). Using convex optimization for nonparametric statistical analysis of point processes. In Proceedings of IEEE International Symposium on Information Theory, 2007 (pp. 1476–1480).

    Google Scholar 

  • Coleman, T. P., & Sarma, S. V. (2010). A computationally efficient method for nonparametric modeling of neural spiking activity with point processes. Neural Computation, 22(8), 2002–2030.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R., & Isham, V. (1980). Point processes (Vol. 12). Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Johnson, M. A., Thompson, S., Gonzalez-Martinez, J., Park, H. J., Bulacio, J., Najm, I., et al. (2014). Performing behavioral tasks in subjects with intracranial electrodes. Journal of Visualized Experiments (92), e51947. https://doi.org/10.3791/51947. https://www.jove.com/video/51947/performing-behavioral-tasks-in-subjects-with-intracranial-electrodes.

    Google Scholar 

  • Johnson, N. L., & Kotz, S. (1970). Continuous univariate distributions. New York: Houghton Mifflin.

    MATH  Google Scholar 

  • Louis, L. S. (1991). Statistical signal processing: Detection, estimation, and time series analysis. Boston, MA: Addison-Wesley Publishing Company.

    MATH  Google Scholar 

  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.

    Article  Google Scholar 

  • Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209–237.

    Article  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6), 47–60.

    Article  Google Scholar 

  • Sacré, P., Kerr, M. S. D., Kahn, K., González-Martínez, J., Bulacio, J., Park, H.-J., et al. (2016a). Lucky rhythms in orbitofrontal cortex bias gambling decisions in humans. Scientific Reports, 6, 36206.

    Article  Google Scholar 

  • Sacré, P., Kerr, M. S. D., Subramanian, S., Kahn, K., González-Martínez, J., Johnson, M. A., et al. (2016b). Winning versus losing during gambling and its neural correlates. In Proceedings of 50th Annual Conference on Information Science and Systems, Princeton, NJ (pp. 557–561).

    Google Scholar 

  • Sacré, P., Kerr, M. S. D., Subramanian, S., Kahn, K., González-Martínez, J., Johnson, M. A., et al. (2016c). The precuneus may encode irrationality in human gambling. In Proceedings of 38th Annual International Conference on IEEE Engineering in Medicine and Biology Society, Orlando, FL (pp. 3406–3409).

    Google Scholar 

  • Santaniello, S., Gale, J. T., Montgomery, E., & Sarma, S. V. (2010). Modeling the motor striatum under deep brain stimulation in normal and MPTP conditions. In Proceedings of 32nd Annual International Conference on IEEE Engineering in Medicine and Biology Society (pp. 2065–2068).

    Google Scholar 

  • Santaniello, S., Montgomery, E. B., Gale, J. T., & Sarma, S. V. (2012). Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation. Frontiers in Integrative Neuroscience, 6, 35.

    Article  Google Scholar 

  • Sarma, S. V., Cheng, M. L., Eden, U. T., Williams, Z., Brown, E. N., & Eskandar, E. N. (2012). The effects of cues on neurons in the basal ganglia in Parkinson’s disease. Frontiers in Integrative Neuroscience, 6, 40.

    Article  Google Scholar 

  • Sarma, S. V., Eden, U. T., Cheng, M. L., Williams, Z. M., Hu, R., Eskandar, E. N., et al. (2010). Using point process models to compare neural spiking activity in the subthalamic nucleus of Parkinson’s patients and a healthy primate. IEEE Transactions in Biomedical Engineering, 57(6), 1297–1305.

    Article  Google Scholar 

  • Schieber, M. H. (2004). Motor control: Basic units of cortical output? Current Biology, 14(9), R353–R354.

    Article  Google Scholar 

  • Shoham, S., Fellows, M. R., & Normann, R. A. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127(2), 111–122.

    Article  Google Scholar 

  • Sklar, S., Walmer, M., Sacré, P., Schevon, C. A., Srinivasan, S., Banks, G. P., et al. (2017). Neuronal activity in human anterior cingulate cortex modulates with internal cognitive state during multi-source interference task. In Proceedings of 39th Annual International Conference on IEEE Engineering in Medicine and Biology Society (pp. 962–965).

    Google Scholar 

  • Smith, E. H., Banks, G. P., Mikell, C. B., Cash, S. S., Patel, S. R., Eskandar, E. N., et al. (2015). Frequency-dependent representation of reinforcement-related information in the human medial and lateral prefrontal cortex. Journal of Neuroscience, 35(48), 15827–15836.

    Article  Google Scholar 

  • Snyder, D. L., & Miller, M. I. (1991). Random point processes in time and space. New York: Springer.

    Book  Google Scholar 

  • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.

    Article  Google Scholar 

  • Van Trees, H. L. (1968). Detection, Estimation, and Modulation Theory, Part I. New York, NY: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgements

This MIST work was supported by the National Institutes of Health (NIH R01 MH106700, NIH K12 NS080223, NIH S10 OD018211, NIH R01 NS084142) and the Dana Foundation. This gambling work was supported by the National Science Foundation (NSF EFRI-MC3: #1137237). P.S. was supported by the Kavli Neuroscience Discovery Institute at the Johns Hopkins University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridevi V. Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sarma, S.V., Sacré, P. (2018). Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Models. In: Chen, Z., Sarma, S.V. (eds) Dynamic Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-71976-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71976-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71975-7

  • Online ISBN: 978-3-319-71976-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics