Skip to main content

Comparative Study of the Dynamic Fracture Toughness Determination of Brittle Materials Using the Kolsky-Hopkinson Bar Machine

  • Chapter
  • First Online:
The Kolsky-Hopkinson Bar Machine

Abstract

Due to its high strength and hardness, high temperature resistance and low cost, alumina ceramics are widely used in a large range of applications such as armor systems, aerospace industry. In these cases, the ceramic materials inevitably subjected to dynamic loading, its dynamic mechanical properties consequently become the criterion. Fracture toughness is the key parameter in fracture mechanics, which defines a material’s resistance to crack propagation for plain strain loading. Measuring this parameter requires knowledge of the specimen geometry and a preset crack within the material. Metals are ductile materials and have traditionally used pre-notch methods to grow a natural crack starter. However, it’s difficult to machine a three-point bending (TPB) specimen for brittle materials because of low tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnstone C, Ruiz C (1995) Dynamic testing of ceramics under tensile stress. Int J Solids Struct 32(17/18):2647–2656

    Article  Google Scholar 

  2. Zhao J, Li HB (2000) Experimental determination of dynamic tensile properties of a granite. Int J Rock Mech Min Sci 37(5):861–866

    Article  Google Scholar 

  3. Rafael J, Proveti C, Michot G (2006) The Brazilian test: a tool for measuring the toughness of a material and its brittle to ductile transition. Int J Fract 139:455–460

    Article  Google Scholar 

  4. Chen WW, Song B (2011) Split Hopkinson (Kolsky) bar design, testing and applications. Springer, USA

    Book  Google Scholar 

  5. Zhu J, Shisheng H, Wang L (2009) An analysis of stress uniformity for concrete—like specimens during SHPB tests. Int J Impact Eng 36:61–72

    Article  Google Scholar 

  6. Wang S, Liu KX (2011) Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure. Mater Sci Eng, A 528:6463–6468

    Article  CAS  Google Scholar 

  7. Chang H, Binner J, Higginson R, Myers P, Webb P, King G (2011) High strain rate characteristics of 3-3 metal-ceramic interpenetrating composites. Mater Sci Eng, A 528:2239–2245

    Article  Google Scholar 

  8. Dong S, Xia K, Huang S, Yin T (2011) Rate dependence of the tensile and flexural strengths of glass-ceramic Macor. J Mater Sci 46:394–399

    Article  CAS  Google Scholar 

  9. Wang QZ, Xing L (1999) Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks. Eng Fract Mech 64:193–201

    Article  Google Scholar 

  10. Wang QZ, Jia XM, Kou SQ et al (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min Sci 41:245–253

    Article  Google Scholar 

  11. Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26:59–62

    Article  Google Scholar 

  12. Xia K, Yao W (2015) Dynamic rock tests using split Hopkinson (Kolsky) bar system—a review. J Rock Mech Geotech Eng 7:27–59

    Article  Google Scholar 

  13. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478

    Article  Google Scholar 

  14. ASTM (2004) C496/C496 M-04, standard test method for splitting tensile strength of cylindrical concrete samples. ASTM International, West Conshohocken, USA

    Google Scholar 

  15. ASTM (2008) D 3967-08: standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken, USA

    Google Scholar 

  16. ISRM Testing Commission (1988) Suggested methods for determining the fracture toughness of rock. Int J Rock Mech Min Sci Geomech Abstr 25(2):71–96

    Google Scholar 

  17. ISRM Testing Commission (1995) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr 32(1):57–64

    Article  Google Scholar 

  18. Samborski S, Sadowskiw T (2010) Dynamic fracture toughness of porous ceramics. J Am Ceram Soc 93(11):3607–3609

    Article  CAS  Google Scholar 

  19. Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41:252–260

    Article  Google Scholar 

  20. Dai F, Xia K, Zheng H, Wang YX (2011) Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 78:2633–2644

    Article  Google Scholar 

  21. Huang S, Luo S, Xia K (2009) Dynamic fracture initiation toughness and propagation toughness of PMMA. Proceedings of the SEM Annual Conference June 1–4, 2009

    Google Scholar 

  22. Liu C (2010) Elastic constants determination and deformation observation using Brazilian disk geometry. Exp Mech 50:1025–1039

    Article  Google Scholar 

  23. Chen J, Guo B, Liu H, Liu H, Chen P (2014) Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation. Strain 50(6):563–570

    Article  CAS  Google Scholar 

  24. Rittel D, Maigre H (1996) An investigation of dynamic crack initiation in PMMA. Mech Mater 23:229–239

    Article  Google Scholar 

  25. Pan B, Qian KM, Xie HM, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001–062007

    Article  Google Scholar 

  26. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, Berlin

    Google Scholar 

  27. Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439

    Google Scholar 

  28. C P, Z Zhongbin, Ma S et al (2011) Measurement of dynamic fracture toughness and failure behavior for explosive mock materials. Front Mech Eng 6(3):292–295

    Google Scholar 

  29. Zhou Z, Chen P, Duan Z, Huang F (2011) Comparative study of the fracture toughness determination of a polymer-bonded explosive simulant. Eng Fract Mech 78:2991–2997

    Article  Google Scholar 

  30. Zhou Z, Chen P, Huang F, Liu S (2011) Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method. Opt Lasers Eng 49:366–370

    Article  Google Scholar 

  31. Kishi T (1991) Dynamic fracture toughness in ceramics and ceramics matrix composites. Eng Fract Mech 40(415):785–790

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengwan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, P., Guo, B., Chen, J. (2018). Comparative Study of the Dynamic Fracture Toughness Determination of Brittle Materials Using the Kolsky-Hopkinson Bar Machine. In: Othman, R. (eds) The Kolsky-Hopkinson Bar Machine. Springer, Cham. https://doi.org/10.1007/978-3-319-71919-1_5

Download citation

Publish with us

Policies and ethics