Skip to main content

Dynamic Brazilian Test Using the Kolsky-Hopkinson Bar Machine

  • Chapter
  • First Online:
The Kolsky-Hopkinson Bar Machine

Abstract

Brittle materials, such as rock, concrete and ceramic, break without significant deformation when subjected to static or dynamic load. The tensile strength, which is much smaller than the compressive strength, is a key mechanical parameter for the brittle materials. The tensile fracture is an important failure mode. Due to its brittleness, a direct uniaxial tension test using a conventional dumbbell sample is difficult to be conducted for a brittle material, and this may become even more difficult in dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Mech Min Sci Geomech Abs 15:99–103

    Article  Google Scholar 

  2. ASTM (2004) C496/ C496 M-04: standard test method for splitting tensile strength of cylindrical concrete samples. ASTM International, West Conshohocken, USA

    Google Scholar 

  3. ASTM (2008) D 3967-08: standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken, USA

    Google Scholar 

  4. Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5:173–225

    Article  Google Scholar 

  5. Wang QZ, Jia XM, Kou SQ (2004) The flattened Brazilian disc sample used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min Sci 41:245–253

    Article  Google Scholar 

  6. Wang QZ, Xing L (1999) Determination of fracture toughness KIC by using the flattened Brazilian disk sample for rocks. Eng Fract Mech 64(2):193–201

    Article  Google Scholar 

  7. Ye JH, Wu FQ, Sun JZ (2009) Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci 46:568–576

    Article  Google Scholar 

  8. Ye JH, Wu FQ, Zhang Y, Ji HG (2012) Estimation of the bi-modulus of materials through deformation measurement in a Brazilian disk test. Int J Rock Mech Min Sci 2:122–131

    Article  Google Scholar 

  9. Johnstone C, Ruiz C (1995) Dynamic testing of ceramics under tensile stress. Int J Solids Struct 32:2647–2656

    Article  Google Scholar 

  10. Zhao J, Li HB (2000) Experimental determination of dynamic tensile properties of a granite. Int J Rock Mech Min Sci 37(5):861–866

    Article  Google Scholar 

  11. Proveti JRC, Michot G (2006) The Brazilian test: a tool for measuring the toughness of a material and its brittle to ductile transition. Int J Fract 139:455–460

    Article  CAS  Google Scholar 

  12. Antonn, JR, Rajendran, AM (1992) Effect of strain rate and size on tensile strength of concrete. In: Proceedings of the topical conference on shock compression of condensed matter. Elsevier, Amsterdam, p 501

    Google Scholar 

  13. Dong SM, Xia KW, Huang S (2011) Tubing Yin. Rate dependence of the tensile and flexural strengths of glass–ceramic Macor. J Mater Sci 46:394–399

    Article  CAS  Google Scholar 

  14. Yan F, Feng XT, Chen R (2012) Dynamic tensile failure of the rock interface between Tuff and Basalt. Rock Mech Rock Eng 45:341–348

    Article  Google Scholar 

  15. Zhou YX, Xia K, Li XB (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112

    Article  Google Scholar 

  16. Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Phil. Trans. Royal Soc. London A213:437–456

    Article  Google Scholar 

  17. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond B62:676–700

    Article  Google Scholar 

  18. Chen Weinong W, Song Bo (2011) Split Hopkinson (Kolsky) bar design, testing and applications. Springer, US

    Book  Google Scholar 

  19. Huang S, Chen R, Xia KW (2010) Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus. J Rock Mech Geotech Eng 2(2):162–168

    Article  Google Scholar 

  20. Huang S, Xia K, Yan F, Feng X (2010) An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech Rock Eng 43(6):677–683

    Article  Google Scholar 

  21. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478

    Article  Google Scholar 

  22. Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775

    Article  Google Scholar 

  23. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:427–431

    Google Scholar 

  24. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, Berlin

    Google Scholar 

  25. Pan B, Qian KM, Xie HM, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6)

    Article  Google Scholar 

  26. Liu C (2010) Elastic constants determination and deformation observation using Brazilian disk geometry. Exp Mech 50:1025–1039

    Article  Google Scholar 

  27. Chen R, Dai F, Lu F (2013) Flattened Brazilian disc method for determining the dynamic tensile stress-strain curve of low strength brittle solids. Exp Mech 53:1153–1159

    Article  Google Scholar 

  28. Grantham SG, Siviour CR, Proud WG (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15:1867–1870

    Article  CAS  Google Scholar 

  29. Zhou ZB, Chen PW, Huang FL (2012) Study on dynamic fracture and mechanical properties of a PBX simulant by using DIC and SHPB method. AIP Conf Proc 1426:665

    Article  CAS  Google Scholar 

  30. Bhattacharya R, Goulbourne NC (2013) Deformation mechanisms in Mn + 1AXn phase ternary ceramics at high strain rates. In: Dynamic behavior of materials, vol 1. Springer, New York, pp 583–597

    Google Scholar 

  31. Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439

    Google Scholar 

  32. Pierron F, Sutton MA, Tiwari V (2011) Ultra high speed dic and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech 51(4):537–563

    Article  Google Scholar 

  33. Martin HS (2005) Elasticity theory, applications, and numerics. Elsevier Butterworth–Heinemann. ISBN 0-12-605811-3

    Google Scholar 

  34. Rastogi PK (2000) Photomechanics (Topics in applied physics). Springer, Berlin

    Google Scholar 

  35. Rastogi P (2015) Digital optical measurement: techniques and applications. Artech House Publishers, USA

    Google Scholar 

  36. Xia Kaiwen, Yao Wei (2015) Dynamic rock tests using split Hopkinson (Kolsky) bar system—a review. J Rock Mech Geotech Eng 7:27–59

    Article  Google Scholar 

  37. Vic-2D Reference Manual, Correlated Solutions. www.correlatedsolutions.com

  38. Zhou Zhongbin, Chen Pengwan, Huang Fenglei, Liu Siqi (2011) Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method. Opt Lasers Eng 49:366–370

    Article  Google Scholar 

  39. Reu PL, Miller TJ (2008) The application of high-speed digital image correlation. J Strain Anal Eng Des 43:673–688

    Article  Google Scholar 

  40. Pierron F (2013) Benchmarking ultra-high speed cameras for full-field deformation measurement. 21st DYMAT Technical Meeting. UK

    Google Scholar 

  41. Rossi M, Pierron F, Forquin P (2014) Assessment of the metrological performance of an in situ storage image sensor ultra-high speed camera for full-field deformation measurements. 2014 Meas Sci Technol 25:025401

    Article  Google Scholar 

  42. Photron limited, http://www.photron.com/

  43. Chen W, Lu F, Cheng M (2002) Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym Test 21(2):113–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengwan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, P., Guo, B., Chen, J. (2018). Dynamic Brazilian Test Using the Kolsky-Hopkinson Bar Machine. In: Othman, R. (eds) The Kolsky-Hopkinson Bar Machine. Springer, Cham. https://doi.org/10.1007/978-3-319-71919-1_4

Download citation

Publish with us

Policies and ethics