Skip to main content

Quasi-Transitive Digraphs and Their Extensions

  • Chapter
  • First Online:
Classes of Directed Graphs

Abstract

A digraph D is quasi-transitive if for any three distinct vertices xyz in D, the existence of the arcs xy and yz in D implies that xz, zx or both are arcs of D. Quasi-transitive digraphs generalize both tournaments (and semicomplete digraphs) and transitive digraphs, and share some of the nice properties of these families. In particular, many problems that are \(\mathcal {NP}\)-complete for general digraphs become solvable in polynomial time when restricted to quasi-transitive digraphs. In this chapter, we focus on presenting how usually difficult problems admit efficient solutions for the family of quasi-transitive digraphs and some of its generalizations. We begin with the study of the structure of quasi-transitive digraphs, given by the recursive characterization theorem known as the Canonical Decomposition Theorem; two generalizations of quasi-transitive digraphs are introduced. We define a digraph D to be k-quasi-transitive if for any pair of vertices xy in D, the existence of a path of length k from x to y implies that xy, yx or both are arcs of D. Given a class of digraphs \(\varPhi \), we say that a digraph is totally \(\varPhi \)-decomposable if it can be expressed as a composition of totally \(\varPhi \)-decomposable digraphs; this concept generalizes the structure of quasi-transitive digraphs given by the Canonical Decomposition Theorem. Some of the problems studied for quasi-transitive digraphs and its generalizations include hamiltonicity, traceability, k-linkages weak k-linkages, existence and number of k-kings, the Path Partition Conjecture and pancyclicity. A brief section is devoted to homomorphisms in transitive digraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    He proved that a graph G admits a quasi-transitive orientation if and only if it admits a transitive orientation if and only if it is a comparability graph.

  2. 2.

    Contraction is defined in Section 1.4 for directed multigraphs. We can obtain a digraph instead of a directed multigraph by deleting spare parallel arcs after contraction.

  3. 3.

    Recall that the g.c.d. of two integers is their least positive linear combination. Clearly, 4 is a linear combination of \(k-1\) and \(k+3\), but since k is even, and \(k-1 \not \equiv k+3\) (mod 3), the least positive linear combination of \(k-1\) and \(k+3\) is 1.

  4. 4.

    Sometimes we allow that the paths may share one or both of their end-vertices, i.e., \(V(P_i)\cap V(P_j) \subseteq \{x_i,y_i,x_j,y_j\}\) whenever \(i \ne j\), where \(x_i=y_j\) or \(x_i=x_j\) is possible.

  5. 5.

    Note that the same pair (or the same vertex) may appear more than once in the list and we may have \(s_i=t_i\).

  6. 6.

    Note that an external path may still start and end in the same module \(H_j\).

  7. 7.

    Note that the running time of \(\mathcal B_{\varPhi }\) may depend heavily on c.

  8. 8.

    \(K_i [ W_i ]\) is the subdigraph of \(K_i\) induced by \(W_i\).

  9. 9.

    See Section 1.4.

References

  1. J. Alva-Samos and C. Hernández-Cruz. \(k\)-quasi-transitive digraphs of large diameter. submitted.

    Google Scholar 

  2. A. Arroyo and H. Galeana-Sánchez. The path partition conjecture is true for some generalizations of tournaments. Discrete Math., 313(3):293–300, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bang-Jensen. Digraphs with the path-merging property. J. Graph Theory, 20(2):255–265, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and related path problems. J. Combin. Theory Ser. B, 51(1):1–23, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bang-Jensen. Linkages in locally semicomplete digraphs and quasi-transitive digraphs. Discrete Math., 196(1-3):13–27, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bang-Jensen. The structure of strong arc-locally semicomplete digraphs. Discrete Math., 283(1-3):1–6, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bang-Jensen, T. M. Christiansen, and A. Maddaloni. Disjoint paths in decomposable digraphs. J. Graph Theory, 85(2):545–567, 2017

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2000.

    MATH  Google Scholar 

  9. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2nd edition, 2009.

    Book  MATH  Google Scholar 

  10. J. Bang-Jensen and G. Gutin. Finding maximum vertex weight paths and cycles in \(\Phi \)-decomposable digraphs, using flows in networks. Technical report 51, Department of Mathematics and Computer Science, Odense University, Denmark, 1993.

    Google Scholar 

  11. J. Bang-Jensen and G. Gutin. Generalizations of tournaments: A survey. J. Graph Theory, 28:171–202, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bang-Jensen and G. Gutin. On the complexity of hamiltonian path and cycle problems in certain classes of digraphs. Discrete Appl. Math., 95:41–60, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bang-Jensen and G. Gutin. Paths and cycles in extended and decomposable digraphs. Discrete Math., 164(1-3):5–19, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Bang-Jensen and G. Gutin. Vertex heaviest paths and cycles in quasi-transitive digraphs. Discrete Math., 163(1-3):217–223, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bang-Jensen, G. Gutin, and A. Yeo. Finding a cheapest cycle in a quasi-transitive digraph with real-valued vertex costs. Discrete Optim., 3:86–94, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Bang-Jensen and J. Huang. Kings in quasi-transitive digraphs. Discrete Math., 185(1-3):19–27, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. J. Graph Theory, 20(2):141–161, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Bang-Jensen, J. Huang, and A. Yeo. Strongly connected spanning subgraphs with the minimum number of arcs in quasi-transitive digraphs. SIAM J. Discrete Math., 16:335–343, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Bang-Jensen and A. Maddaloni. Arc-disjoint paths in decomposable digraphs. J. Graph Theory, 77(2):89–110, 2014.

    MathSciNet  MATH  Google Scholar 

  20. J. Bang-Jensen, M.H. Nielsen, and A. Yeo. Longest path partitions in generalizations of tournaments. Discrete Math., 306(16):1830–1839, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Bang-Jensen and C. Thomassen. A polynomial algorithm for the 2-path problem for semicomplete digraphs. SIAM J. Discrete Math., 5:366–376, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Bezem, C. Grabmayer, and M. Walicki. Expressive power of digraph solvability. Ann. Pure Appl. Logic, 163(3):200–213, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Boesch and R. Tindell. Robbins’s theorem for mixed multigraphs. Amer. Math. Mon., 87(9):716–719, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.A. Bondy. Basic graph theory: paths and circuits. In Handbook of combinatorics, Vol. 1, 2, pages 3–110. Elsevier, Amsterdam, 1995.

    Google Scholar 

  25. E. Boros and V. Gurvich. Perfect graphs, kernels, and cores of cooperative games. Discrete Math., 306(19):2336–2354, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Chvátal. On the computational complexity of finding a kernel. Technical report CRM-300, Centre de recherches mathématiques, Université de Montréal, 1973.

    Google Scholar 

  27. V. Chvátal and C. Thomassen. Distances in orientations of graphs. J. Combin. Theory Ser. B, 24(1):61–75, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Feder, P. Hell, and C. Hernández-Cruz. Colourings, Homomorphisms, and Partitions of Transitive Digraphs. European J. Combin., 60:55–65, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Fortune, J.E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theor. Comput. Sci., 10:111–121, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Fradkin and P.D. Seymour. Edge-disjoint paths in digraphs with bounded independence number. J. Combin. Theory Ser. B, 110:19–46, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  32. A.S. Fraenkel. Planar kernel and Grundy with \(d \le 3\), \(d_{out} \le 2\), and \(d_{in} \le 2\) are \(NP\)-complete. Discrete Appl. Math., 3(4):257–262, 1981.

    MathSciNet  Google Scholar 

  33. M. Frick, S. van Aardt, G. Dlamini, J. Dunbar, and O. Oellermann. The directed path partition conjecture. Discuss. Math. Graph Theory, 25(3):331–343, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Galeana-Sánchez, I.A. Goldfeder, and I. Urrutia. On the structure of strong \(3\)-quasi-transitive digraphs. Discrete Math., 310(19):2495–2498, 2010.

    MathSciNet  MATH  Google Scholar 

  35. H. Galeana-Sánchez and R. Gómez. Independent sets and non-augmentable paths in generalizations of tournaments. Discrete Math., 308(12):2460–2472, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Galeana-Sánchez and C. Hernández-Cruz. \(k\)-kernels in generalizations of transitive digraphs. Discuss. Math. Graph Theory, 31(2):293–312, 2011.

    MathSciNet  MATH  Google Scholar 

  37. H. Galeana-Sánchez, C. Hernández-Cruz, and M.A. Juárez-Camacho. \(k\)-kernels in \(k\)-transitive and \(k\)-quasi-transitive digraphs. Discrete Math., 313(22):2582–2591, 2013.

    MathSciNet  MATH  Google Scholar 

  38. P. García-Vázquez and C. Hernández-Cruz. Some results on \(4\)-transitive digraphs. Discuss. Math. Graph Theory, 37(1):117–129, 2017.

    MathSciNet  MATH  Google Scholar 

  39. A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut orienter les arětes de manière à obtenir le graphe d’une relation d’ordre. C. R. Acad. Sci. Paris, 254:1370–1371, 1962.

    MathSciNet  MATH  Google Scholar 

  40. G. Gutin. Characterizations of vertex pancyclic and pancyclic ordinary complete multipartite digraphs. Discrete Math., 141(1-3):153–162, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Gutin. Polynomial algorithms for finding Hamiltonian paths and cycles in quasi-transitive digraphs. Australas. J. Combin., 10:231–236, 1994.

    MathSciNet  MATH  Google Scholar 

  42. G. Gutin, K.M. Koh, E.G. Tay, and A. Yeo. On the number of quasi-kernels in digraphs. J. Graph Theory, 46(1):48–56, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter. Discrete Appl. Math., 121(1-3):129–138, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Heard and J. Huang. Disjoint quasi-kernels in digraphs. J. Graph Theory, 58(3):251–260, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Hell and C. Hernández-Cruz. On the complexity of the \(3\)-kernel problem in some classes of digraphs. Discuss. Math. Graph Theory, 34(1):167–185, 2013.

    MathSciNet  MATH  Google Scholar 

  46. C. Hernández-Cruz. \(3\)-transitive digraphs. Discuss. Math. Graph Theory, 32(3):205–219, 2012.

    MathSciNet  MATH  Google Scholar 

  47. C. Hernández-Cruz. \(4\)-transitive digraphs I: The structure of strong \(4\)-transitive digraphs. Discuss. Math. Graph Theory, 33(2):247–260, 2013.

    MathSciNet  MATH  Google Scholar 

  48. C. Hernández-Cruz and H. Galeana-Sánchez. \(k\)-kernels in \(k\)-transitive and \(k\)-quasi-transitive digraphs. Discrete Math., 312(16):2522–2530, 2012.

    MathSciNet  MATH  Google Scholar 

  49. C. Hernández-Cruz and J.J. Montellano-Ballesteros. Some remarks on the structure of strong \(k\)-transitive digraphs. Discuss. Math. Graph Theory, 34(4):651–671, 2014.

    MathSciNet  MATH  Google Scholar 

  50. K.M. Koh and B.P. Tan. Number of \(4\)-kings in bipartite tournaments with no \(3\)-kings. Discrete Math., 154(1-3):281–287, 1996.

    MathSciNet  MATH  Google Scholar 

  51. B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.

    Book  MATH  Google Scholar 

  52. J.M. Laborde, C. Payan, and N.H. Xuong. Independent sets and longest directed paths in digraphs. Teubner-Texte Math., 59:173–177, 1983.

    MathSciNet  MATH  Google Scholar 

  53. H.G. Landau. On dominance relations and the structure of animal societies III. The condition for a score structure. Bull. Math. Biophys., 15:143–148, 1953.

    Article  MathSciNet  Google Scholar 

  54. S.B. Maurer. The king chicken theorems. Math. Mag., 53(2):67–80, 1980.

    Article  MathSciNet  Google Scholar 

  55. A. Palbom. Complexity of the directed spanning cactus problem. Discrete Appl. Math., 146(1):81–91, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Thomassen. Hamiltonian-connected tournaments. J. Combin. Theory Ser. B, 28(2):142–163, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1944.

    MATH  Google Scholar 

  58. M. Walicki and S. Dyrkolbotn. Finding kernels or solving SAT. J. Discrete Algorithms, 10:146–164, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Wang. \((k-1)\)-kernels in strong \(k\)-transitive digraphs. Discuss. Math. Graph Theory, 35(2):229–235, 2015.

    MathSciNet  MATH  Google Scholar 

  60. R. Wang and W. Meng. \(k\)-kings in \(k\)-quasitransitive digraphs. J. Graph Theory, 79(1):55–62, 2015.

    MathSciNet  MATH  Google Scholar 

  61. R. Wang and S. Wang. Underlying graphs of \(3\)-quasi-transitive and \(3\)-transitive digraphs. Discuss. Math. Graph Theory, 33(2):429–435, 2013.

    MathSciNet  MATH  Google Scholar 

  62. R. Wang and H. Zhang. Hamiltonian paths in \(k\)-quasi-transitive digraphs. Discrete Math., 339(8):2094–2099, 2016.

    MathSciNet  MATH  Google Scholar 

  63. R. Wang and H. Zhang. \((k+1)\)-kernels and the number of \(k\)-kings in \(k\)-quasi-transitive digraphs. Discrete Math., 338(1):114–121, 2015.

    MathSciNet  MATH  Google Scholar 

  64. S. Wang and R. Wang. Independent sets and non-augmentable paths in arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs. Discrete Math., 311(4):282–288, 2011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Hernández-Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galeana-Sánchez, H., Hernández-Cruz, C. (2018). Quasi-Transitive Digraphs and Their Extensions. In: Bang-Jensen, J., Gutin, G. (eds) Classes of Directed Graphs. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-71840-8_8

Download citation

Publish with us

Policies and ethics