Skip to main content

Integration of Synaptic and Intrinsic Conductances Shapes Microcircuits in the Superior Olivary Complex

  • Chapter
  • First Online:
The Mammalian Auditory Pathways

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 65))

Abstract

The superior olivary complex is a group of interconnected brainstem nuclei that receive and integrate binaural auditory input. Each nucleus forms part of local microcircuits subserving multiple complimentary roles in auditory processing, including sound localization, detection of signals in noise, and gap detection. The three nuclei of the trapezoid body (medial, lateral, and ventral) provide indirect inhibitory local projections that are integrated with direct excitatory inputs from the cochlear nuclei at the three output nuclei (the medial and lateral superior olivary nuclei and the superior paraolivary nucleus). Each nucleus expresses a different spectrum of ionic conductances that determine the intrinsic excitability of their principal neurons and adapt how the microcircuit integrates the binaural excitatory and inhibitory synaptic inputs. Specialized synapses, such as the calyx of Held, help maintain temporal information and minimize jitter, while the location of synapses on specific dendrites or somatic regions provides further refinement of the microcircuit. This chapter also includes how the principal neurons of each nucleus express differing densities of ionic conductance by which they exhibit a unique threshold, action potential waveform, and characteristic firing properties. A broad perspective will be provided on how each of these functional elements come together to sculpt the local neuronal microcircuit into performing specific physiological roles for interaural timing discrimination, interaural level discrimination, and gap detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, T. J., Schwarz, D. W., & Finlayson, P. G. (1999). Firing properties of chopper and delay neurons in the lateral superior olive of the rat. Experimental Brain Research, 124(4), 489–502.

    Article  CAS  PubMed  Google Scholar 

  • Alamilla, J., & Gillespie, D. C. (2013). Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway. PLoS One, 8(9), e75688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht, O., Dondzillo, A., Mayer, F., Thompson, J. A., & Klug, A. (2014). Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse. Frontiers in Neural Circuits, 8, 83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altieri, S. C., Zhao, T., Jalabi, W., & Maricich, S. M. (2014). Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB. Frontiers in Neural Circuits, 8, 109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson, L. A., & Linden, J. F. (2016). Mind the gap: Two dissociable mechanisms of temporal processing in the auditory system. The Journal of Neuroscience, 366(6), 1977–1995.

    Article  CAS  Google Scholar 

  • Aubie, B., Sayegh, R., & Faure, P. A. (2012). Duration tuning across vertebrates. The Journal of Neuroscience, 32(18), 6373–6390.

    Article  CAS  PubMed  Google Scholar 

  • Awatramani, G. B., Turecek, R., & Trussell, L. O. (2005). Staggered development of GABAergic and glycinergic transmission in the MNTB. Journal of Neurophysiology, 93(2), 819–828.

    Article  CAS  PubMed  Google Scholar 

  • Bajo, V. M., Merchan, M. A., Lopez, D. E., & Rouiller, E. M. (1993). Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. Journal of Comparative Neurology, 334(2), 241–262.

    Article  CAS  PubMed  Google Scholar 

  • Banks, M. I., Pearce, R. A., & Smith, P. H. (1993). Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: Voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. Journal of Neurophysiology, 70(4), 1420–1432.

    Article  CAS  PubMed  Google Scholar 

  • Banks, M. I., & Smith, P. H. (1992). Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. The Journal of Neuroscience, 12(7), 2819–2837.

    CAS  PubMed  Google Scholar 

  • Barnes-Davies, M., Barker, M. C., Osmani, F., & Forsythe, I. D. (2004). Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. European Journal of Neuroscience, 19(2), 325–333.

    Article  PubMed  Google Scholar 

  • Barnes-Davies, M., Owens, S., & Forsythe, I. D. (2001). Calcium channels triggering transmitter release in the rat medial superior olive. Hearing Research, 1662(1–2), 134–145.

    Article  Google Scholar 

  • Baumann, V. J., Lehnert, S., Leibold, C., & Koch, U. (2013). Tonotopic organization of the hyperpolarization-activated current (Ih) in the mammalian medial superior olive. Frontiers in Neural Circuits, 7, 117. https://doi.org/10.3389/fncir.2013.00117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Behrend, O., Brand, A., Kapfer, C., & Grothe, B. (2002). Auditory response properties in the superior paraolivary nucleus of the gerbil. Journal of Neurophysiology, 87(6), 2915–2928.

    Article  PubMed  Google Scholar 

  • Bollmann, J. H., Helmchen, F., Borst, J. G., & Sakmann, B. (1998). Postsynaptic Ca2+ influx mediated by three different pathways during synaptic transmission at a calyx-type synapse. The Journal of Neuroscience, 18(24), 10409–10419.

    CAS  PubMed  Google Scholar 

  • Brand, A., Behrend, O., Marquardt, T., McAlpine, D., & Grothe, B. (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature, 417(6888), 543–547.

    Article  CAS  PubMed  Google Scholar 

  • Brew, H. M., & Forsythe, I. D. (1995). Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. The Journal of Neuroscience, 15(12), 8011–8022.

    CAS  PubMed  Google Scholar 

  • Brew, H. M., & Forsythe, I. D. (2005). Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body. Hearing Research, 2066(1–2), 116–132.

    Article  CAS  Google Scholar 

  • Carr, C. E., & Konishi, M. (1988). Axonal delay lines for time measurement in the owl's brainstem. Proceedings of the National Academy of Sciences of the United States of America, 85(21), 8311–8315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case, D. T., & Gillespie, D. C. (2011). Pre- and postsynaptic properties of glutamatergic transmission in the immature inhibitory MNTB-LSO pathway. Journal of Neurophysiology, 1066(5), 2570–2579.

    Article  CAS  Google Scholar 

  • Case, D. T., Zhao, X., & Gillespie, D. C. (2011). Functional refinement in the projection from ventral cochlear nucleus to lateral superior olive precedes hearing onset in rat. PLoS One, 66(6), e20756.

    Article  CAS  Google Scholar 

  • Couchman, K., Grothe, B., & Felmy, F. (2010). Medial superior olivary neurons receive surprisingly few excitatory and inhibitory inputs with balanced strength and short-term dynamics. Journal of Neuroscience, 30(50), 17111–17121.

    Article  CAS  PubMed  Google Scholar 

  • Couchman, K., Grothe, B., & Felmy, F. (2012). Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive. Journal of Neurophysiology, 107(4), 1186–1198.

    Article  CAS  PubMed  Google Scholar 

  • Darrow, K. N., Maison, S. F., & Liberman, M. C. (2006). Cochlear efferent feedback balances interaural sensitivity. Nature Neuroscience, 9(12), 1474–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehmel, S., Kopp-Scheinpflug, C., Dorrscheidt, G. J., & Rubsamen, R. (2002). Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hearing Research, 172(1–2), 18–36.

    Article  PubMed  Google Scholar 

  • Dondzillo, A., Thompson, J. A., & Klug, A. (2016). Recurrent inhibition to the medial nucleus of the trapezoid body in the mongolian gerbil (Meriones unguiculatus). PLoS One, 11(8), e0160241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felix, R. A., 2nd, Fridberger, A., Leijon, S., Berrebi, A. S., & Magnusson, A. K. (2011). Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. The Journal of Neuroscience, 31(35), 12566–12578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix, R. A., 2nd, Vonderschen, K., Berrebi, A. S., & Magnusson, A. K. (2013). Development of on-off spiking in superior paraolivary nucleus neurons of the mouse. Journal of Neurophysiology, 109(11), 2691–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl, M. J., Burger, R. M., Schmidt-Pauly, M., Alexandrova, O., Sinclair, J. L., Grothe, B., et al. (2016). Physiology and anatomy of neurons in the medial superior olive of the mouse. Journal of Neurophysiology, 1166(6), 2676–2688.

    Article  Google Scholar 

  • Fischl, M. J., Combs, T. D., Klug, A., Grothe, B., & Burger, R. M. (2012). Modulation of synaptic input by GABAB receptors improves coincidence detection for computation of sound location. The Journal of Physiology, 590(13), 3047–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford, M. C., Alexandrova, O., Cossell, L., Stange-Marten, A., Sinclair, J., Kopp-Scheinpflug, C., et al. (2015). Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nature Communications, 66, 8073.

    Article  CAS  Google Scholar 

  • Forsythe, I. D. (1994). Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. The Journal of Physiology, 479(3), 381–387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friauf, E., & Ostwald, J. (1988). Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Experimental Brain Research, 73(2), 263–284.

    Article  CAS  PubMed  Google Scholar 

  • Fujino, K., Koyano, K., & Ohmori, H. (1997). Lateral and medial olivocochlear neurons have distinct electrophysiological properties in the rat brain slice. Journal of Neurophysiology, 77(5), 2788–2804.

    Article  CAS  PubMed  Google Scholar 

  • Giugovaz-Tropper, B., Gonzalez-Inchauspe, C., Di Guilmi, M. N., Urbano, F. J., Forsythe, I. D., & Uchitel, O. D. (2011). P/Q-type calcium channel ablation in a mice glycinergic synapse mediated by multiple types of Ca(2)+ channels alters transmitter release and short term plasticity. Neuroscience, 192, 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Grothe, B. (2000). The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Progress in Neurobiology, 661(6), 581–610.

    Article  Google Scholar 

  • Grothe, B. (2003). New roles for synaptic inhibition in sound localization. Nature Reviews. Neuroscience, 4(7), 540–550.

    Article  CAS  PubMed  Google Scholar 

  • Grothe, B., Covey, E., & Casseday, J. H. (2001). Medial superior olive of the big brown bat: Neuronal responses to pure tones, amplitude modulations, and pulse trains. Journal of Neurophysiology, 866(5), 2219–2230.

    Article  Google Scholar 

  • Grothe, B., & Pecka, M. (2014). The natural history of sound localization in mammals—A story of neuronal inhibition. Frontiers in Neural Circuits, 8, 116. https://doi.org/10.3389/fncir.2014.00116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    Article  CAS  PubMed  Google Scholar 

  • Guinan, J. J., Jr., & Li, R. Y. (1990). Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hearing Research, 49(1–3), 321–334.

    Article  PubMed  Google Scholar 

  • Hamann, M., Billups, B., & Forsythe, I. D. (2003). Non-calyceal excitatory inputs mediate low fidelity synaptic transmission in rat auditory brainstem slices. European Journal of Neuroscience, 18(10), 2899–2902.

    Article  PubMed  Google Scholar 

  • Hardman, R. M., & Forsythe, I. D. (2009). Ether-á-go-go-related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons. The Journal of Physiology, 587(11), 2487–2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassfurth, B., Magnusson, A. K., Grothe, B., & Koch, U. (2009). Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons. European Journal of Neuroscience, 30(7), 1227–1238.

    Article  PubMed  Google Scholar 

  • Held, H. (1893). Die centrale Gehörleitung. Archiv für Anatomie und Physiologie/Anatomische Abteilung, 1893, 201–248. https://core.ac.uk/download/pdf/14520980.pdf.

    Google Scholar 

  • Helfert, R. H., & Schwartz, I. R. (1987). Morphological features of five neuronal classes in the gerbil lateral superior olive. American Journal of Anatomy, 179(1), 55–69.

    Article  CAS  PubMed  Google Scholar 

  • Hirtz, J. J., Boesen, M., Braun, N., Deitmer, J. W., Kramer, F., Lohr, C., et al. (2011). Cav1.3 calcium channels are required for normal development of the auditory brainstem. The Journal of Neuroscience, 31(22), 8280–8294.

    Article  CAS  PubMed  Google Scholar 

  • Holcomb, P. S., Deerinck, T. J., Ellisman, M. H., & Spirou, G. A. (2013). Construction of a polarized neuron. The Journal of Physiology, 591(13), 3145–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalabi, W., Kopp-Scheinpflug, C., Allen, P. D., Schiavon, E., DiGiacomo, R. R., Forsythe, I. D., et al. (2013). Sound localization ability and glycinergic innervation of the superior olivary complex persist after genetic deletion of the medial nucleus of the trapezoid body. The Journal of Neuroscience, 33(38), 15044–15049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, J., Forsythe, I. D., & Kopp-Scheinpflug, C. (2010). Going native: Voltage-gated potassium channels controlling neuronal excitability. The Journal of Physiology, 588(17), 3187–3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, J., Griffin, S. J., Baker, C., Skrzypiec, A., Chernova, T., & Forsythe, I. D. (2008). Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. The Journal of Physiology, 5866(14), 3493–3509.

    Article  CAS  Google Scholar 

  • Kadner, A., & Berrebi, A. S. (2008). Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience, 151(3), 868–887.

    Article  CAS  PubMed  Google Scholar 

  • Kadner, A., Kulesza, R. J., Jr., & Berrebi, A. S. (2006). Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. Journal of Neurophysiology, 95(3), 1499–1508.

    Article  PubMed  Google Scholar 

  • Kandler, K., Clause, A., & Noh, J. (2009). Tonotopic reorganization of developing auditory brainstem circuits. Nature Neuroscience, 12(6), 711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapfer, C., Seidl, A. H., Schweizer, H., & Grothe, B. (2002). Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nature Neuroscience, 5(3), 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Karcz, A., Hennig, M. H., Robbins, C. A., Tempel, B. L., Rübsamen, R., & Kopp-Scheinpflug, C. (2011). Low-voltage activated Kv1.1 subunits are crucial for the processing of sound source location in the lateral superior olive in mice. The Journal of Physiology, 589(5), 1143–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, G., & Kandler, K. (2003). Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nature Neuroscience, 66(3), 282–290.

    Article  CAS  Google Scholar 

  • Kim, J. H., Kushmerick, C., & von Gersdorff, H. (2010). Presynaptic resurgent Na+ currents sculpt the action potential waveform and increase firing reliability at a CNS nerve terminal. The Journal of Neuroscience, 30(46), 15479–15490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, U., Braun, M., Kapfer, C., & Grothe, B. (2004). Distribution of HCN1 and HCN2 in rat auditory brainstem nuclei. European Journal of Neuroscience, 20(1), 79–91.

    Article  PubMed  Google Scholar 

  • Koike-Tani, M., Saitoh, N., & Takahashi, T. (2005). Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. The Journal of Neuroscience, 25(1), 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Koka, K., & Tollin, D. J. (2014). Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs. Frontiers in Neural Circuits, 8, 144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolston, J., Osen, K. K., Hackney, C. M., Ottersen, O. P., & Storm-Mathisen, J. (1992). An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anatomy and Embryology (Berlin), 1866(5), 443–465.

    Google Scholar 

  • Kopp-Scheinpflug, C., Dehmel, S., Tolnai, S., Dietz, B., Milenkovic, I., & Rübsamen, R. (2008). Glycine-mediated changes of onset reliability at a mammalian central synapse. Neuroscience, 157(2), 432–445.

    Article  CAS  PubMed  Google Scholar 

  • Kopp-Scheinpflug, C., Lippe, W. R., Dorrscheidt, G. J., & Rubsamen, R. (2003). The medial nucleus of the trapezoid body in the gerbil is more than a relay: Comparison of pre- and postsynaptic activity. Journal of the Association for Research in Otolaryngology, 4(1), 1–23.

    Article  PubMed  Google Scholar 

  • Kopp-Scheinpflug, C., Pigott, B. M., & Forsythe, I. D. (2015). Nitric oxide selectively suppresses IH currents mediated by HCN1-containing channels. The Journal of Physiology, 593(7), 1685–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp-Scheinpflug, C., Tozer, A. J., Robinson, S. W., Tempel, B. L., Hennig, M. H., & Forsythe, I. D. (2011). The sound of silence: Ionic mechanisms encoding sound termination. Neuron, 71(5), 911–925.

    Article  CAS  PubMed  Google Scholar 

  • Kulesza, R. J., Jr., & Berrebi, A. S. (2000). Superior paraolivary nucleus of the rat is a GABAergic nucleus. Journal of the Association for Research in Otolaryngology, 1(4), 255–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulesza, R. J., Jr., & Grothe, B. (2015). Yes, there is a medial nucleus of the trapezoid body in humans. Frontiers in Neuroanatomy, 9, 35. https://doi.org/10.3389/fnana.2015.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulesza, R. J., Jr., Spirou, G. A., & Berrebi, A. S. (2003). Physiological response properties of neurons in the superior paraolivary nucleus of the rat. Journal of Neurophysiology, 89(4), 2299–2312.

    Article  PubMed  Google Scholar 

  • Kuwabara, N., DiCaprio, R. A., & Zook, J. M. (1991). Afferents to the medial nucleus of the trapezoid body and their collateral projections. The Journal of Comparative Neurology, 314(4), 684–706.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, N., & Zook, J. M. (1991). Classification of the principal cells of the medial nucleus of the trapezoid body. The Journal of Comparative Neurology, 314(4), 707–720.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, N., & Zook, J. M. (1999). Local collateral projections from the medial superior olive to the superior paraolivary nucleus in the gerbil. Brain Research, 8466(1), 59–71.

    Article  Google Scholar 

  • Leao, R. N., Naves, M. M., Leao, K. E., & Walmsley, B. (2006). Altered sodium currents in auditory neurons of congenitally deaf mice. European Journal of Neuroscience, 24(4), 1137–1146.

    Article  PubMed  Google Scholar 

  • Leao, R. N., Svahn, K., Berntson, A., & Walmsley, B. (2005). Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice. European Journal of Neuroscience, 22(1), 147–157.

    Article  PubMed  Google Scholar 

  • Lehnert, S., Ford, M. C., Alexandrova, O., Hellmundt, F., Felmy, F., Grothe, B., et al. (2014). Action potential generation in an anatomically constrained model of medial superior olive axons. The Journal of Neuroscience, 34(15), 5370–5384.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., & Kelly, J. B. (1992). Binaural responses in rat inferior colliculus following kainic acid lesions of the superior olive: Interaural intensity difference functions. Hearing Research, 661(1–2), 73–85.

    Article  Google Scholar 

  • Li, W., Kaczmarek, L. K., & Perney, T. M. (2001). Localization of two high-threshold potassium channel subunits in the rat central auditory system. Journal of Comparative Neurology, 437(2), 196–218.

    Article  CAS  PubMed  Google Scholar 

  • Magnusson, A. K., Park, T. J., Pecka, M., Grothe, B., & Koch, U. (2008). Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron, 59(1), 125–137.

    Article  CAS  PubMed  Google Scholar 

  • Mathews, P. J., Jercog, P. E., Rinzel, J., Scott, L. L., & Golding, N. L. (2010). Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nature Neuroscience, 13(5), 601–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, J. K., & Moore, R. Y. (1987). Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. The Journal of Comparative Neurology, 2660(2), 157–174.

    Article  Google Scholar 

  • Myoga, M. H., Lehnert, S., Leibold, C., Felmy, F., & Grothe, B. (2014). Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nature Communications, 5, 3790. https://doi.org/10.1038/ncomms4790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oertel, D. (2009). A team of potassium channels tunes up auditory neurons. The Journal of Physiology, 587(11), 2417–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecka, M., Brand, A., Behrend, O., & Grothe, B. (2008). Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. The Journal of Neuroscience, 28(27), 6914–6925.

    Article  CAS  PubMed  Google Scholar 

  • Pilati, N., Linley, D. M., Selvaskandan, H., Uchitel, O., Hennig, M. H., Kopp-Scheinpflug, C., et al. (2016). Acoustic trauma slows AMPA receptor-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function. The Journal of Physiology, 594(13), 3683–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, M. T., Seeman, S. C., & Golding, N. L. (2014). The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings. Frontiers in Neural Circuits, 8, 49. https://doi.org/10.3389/fncir.2014.00049.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, R. C., & Ribak, C. E. (1987). GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. The Journal of Comparative Neurology, 258(2), 267–280.

    Article  CAS  PubMed  Google Scholar 

  • Ryugo, D. K., Fay, R. R., & Popper, A. N. (Eds.). (2011). Auditory and vestibular efferents. New York: Springer.

    Google Scholar 

  • Schneggenburger, R., & Forsythe, I. D. (2006). The calyx of Held. Cell and Tissue Research, 3266(2), 311–337. [Research Support Non-U.S. Gov’t Review].

    Article  Google Scholar 

  • Schofield, B. R. (1991). Superior paraolivary nucleus in the pigmented guinea pig: Separate classes of neurons project to the inferior colliculus and the cochlear nucleus. The Journal of Comparative Neurology, 312(1), 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Schofield, B. R. (1995). Projections from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs. Journal of Comparative Neurology, 3660(1), 135–149.

    Article  Google Scholar 

  • Schofield, B. R., & Cant, N. B. (1991). Organization of the superior olivary complex in the guinea pig. I. Cytoarchitecture, cytochrome oxidase histochemistry, and dendritic morphology. The Journal of Comparative Neurology, 314(4), 645–670.

    Article  CAS  PubMed  Google Scholar 

  • Schofield, B. R., & Cant, N. B. (1992). Organization of the superior olivary complex in the guinea pig: II. Patterns of projection from the periolivary nuclei to the inferior colliculus. The Journal of Comparative Neurology, 317(4), 438–455.

    Article  CAS  PubMed  Google Scholar 

  • Schofield, B. R., Mellott, J. G., & Motts, S. D. (2014). Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Frontiers in Neuroanatomy, 8, 70. https://doi.org/10.3389/fnana.2014.00070.

    PubMed  PubMed Central  Google Scholar 

  • Scott, L. L., Mathews, P. J., & Golding, N. L. (2005). Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. The Journal of Neuroscience, 25(35), 7887–7895.

    Article  CAS  PubMed  Google Scholar 

  • Seidl, A. H., & Rubel, E. W. (2016). Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia, 664(4), 487–494.

    Article  Google Scholar 

  • Sinclair, J. L., Barnes-Davies, M., Kopp-Scheinpflug, C., & Forsythe, I. D. (2017a). Strain-specific differences in the development of neuronal excitability in the mouse ventral nucleus of the trapezoid body. Hearing Research, 354, 28–37.

    Article  PubMed  Google Scholar 

  • Sinclair, J. L., Fischl, M. J., Alexandrova, O., Heß, M., Grothe, B., Leibold, C., et al. (2017b). Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. The Journal of Neuroscience, 37(34), 8239–8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siveke, I., Pecka, M., Seidl, A. H., Baudoux, S., & Grothe, B. (2006). Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus. Journal of Neurophysiology, 966(3), 1425–1440.

    Article  Google Scholar 

  • Smith, A. J., Owens, S., & Forsythe, I. D. (2000). Characterization of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. The Journal of Physiology, 529(3), 681–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer, I., Lingenhohl, K., & Friauf, E. (1993). Principal cells of the rat medial nucleus of the trapezoid body: An intracellular in vivo study of their physiology and morphology. Experimental Brain Research, 95(2), 223–239.

    Article  CAS  PubMed  Google Scholar 

  • Spirou, G. A., & Berrebi, A. S. (1996). Organization of ventrolateral periolivary cells of the cat superior olive as revealed by PEP-19 immunocytochemistry and Nissl stain. The Journal of Comparative Neurology, 3668(1), 100–120.

    Article  Google Scholar 

  • Spirou, G. A., Rowland, K. C., & Berrebi, A. S. (1998). Ultrastructure of neurons and large synaptic terminals in the lateral nucleus of the trapezoid body of the cat. The Journal of Comparative Neurology, 398(2), 257–272.

    Article  CAS  PubMed  Google Scholar 

  • Stange, A., Myoga, M. H., Lingner, A., Ford, M. C., Alexandrova, O., Felmy, F., et al. (2013). Adaptation in sound localization: From GABA(B) receptor-mediated synaptic modulation to perception. Nature Neuroscience, 166(12), 1840–1847.

    Article  CAS  Google Scholar 

  • Steinert, J. R., Postlethwaite, M., Jordan, M. D., Chernova, T., Robinson, S. W., & Forsythe, I. D. (2010). NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. The Journal of Physiology, 588(3), 447–463.

    Article  CAS  PubMed  Google Scholar 

  • Steinert, J. R., Robinson, S. W., Tong, H., Haustein, M. D., Kopp-Scheinpflug, C., & Forsythe, I. D. (2011). Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability. Neuron, 71(2), 291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterenborg, J. C., Pilati, N., Sheridan, C. J., Uchitel, O. D., Forsythe, I. D., & Barnes-Davies, M. (2010). Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons. Hearing Research, 270(1–2), 119–126.

    Article  PubMed  Google Scholar 

  • Thompson, A. M., & Schofield, B. R. (2000). Afferent projections of the superior olivary complex. Microscopy Research and Techniques, 51(4), 330–354.

    Article  CAS  Google Scholar 

  • Thompson, A. M., & Thompson, G. C. (1991). Posteroventral cochlear nucleus projections to olivocochlear neurons. The Journal of Comparative Neurology, 303(2), 267–285.

    Article  CAS  PubMed  Google Scholar 

  • Tollin, D. J. (2003). The lateral superior olive: A functional role in sound source localization. The Neuroscientist, 9(2), 127–143.

    Article  PubMed  Google Scholar 

  • Tolnai, S., Englitz, B., Kopp-Scheinpflug, C., Dehmel, S., Jost, J., & Rübsamen, R. (2008). Dynamic coupling of excitatory and inhibitory responses in the medial nucleus of the trapezoid body. European Journal of Neuroscience, 27(12), 3191–3204.

    Article  PubMed  Google Scholar 

  • Tong, H., Kopp-Scheinpflug, C., Pilati, N., Robinson, S. W., Sinclair, J. L., Steinert, J. R., et al. (2013). Protection from noise-induced hearing loss by Kv2.2 potassium currents in the central medial olivocochlear system. The Journal of Neuroscience, 33(21), 9113–9121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tozer, A. J., Forsythe, I. D., & Steinert, J. R. (2012). Nitric oxide signalling augments neuronal voltage-gated L-type (Ca(v)1) and P/q-type (Ca(v)2.1) channels in the mouse medial nucleus of the trapezoid body. PLoS One, 7(2), e32256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, J. J., Koka, K., & Tollin, D. J. (2010). Varying overall sound intensity to the two ears impacts interaural level difference discrimination thresholds by single neurons in the lateral superior olive. Journal of Neurophysiology, 103(2), 875–886.

    Article  PubMed  Google Scholar 

  • Vinuela, A., Aparicio, M. A., Berrebi, A. S., & Saldana, E. (2011). Connections of the superior paraolivary nucleus of the rat: II. Reciprocal connections with the tectal longitudinal column. Frontiers in Neuroanatomy, 5, 1. https://doi.org/10.3389/fnana.2011.00001.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Gersdorff, H., & Borst, J. G. (2002). Short-term plasticity at the calyx of Held. Nature Reviews Neuroscience, 3(1), 53–64.

    Article  CAS  Google Scholar 

  • Wang, H., Kunkel, D. D., Martin, T. M., Schwartzkroin, P. A., & Tempel, B. L. (1993). Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature, 3665(6441), 75–79.

    Article  Google Scholar 

  • Wang, L. Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. The Journal of Physiology, 509(1), 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warr, W. B., & Beck, J. E. (1996). Multiple projections from the ventral nucleus of the trapezoid body in the rat. Hearing Research, 93(1–2), 83–101.

    Article  CAS  PubMed  Google Scholar 

  • Warr, W. B., Boche, J. B., & Neely, S. T. (1997). Efferent innervation of the inner hair cell region: Origins and terminations of two lateral olivocochlear systems. Hearing Research, 108(1–2), 89–111.

    Article  CAS  PubMed  Google Scholar 

  • Weisz, C. J., Rubio, M. E., Givens, R. S., & Kandler, K. (2016). Excitation by axon terminal GABA spillover in a sound localization circuit. The Journal of Neuroscience, 366(3), 911–925.

    Article  CAS  Google Scholar 

  • Whitley, J. M., & Henkel, C. K. (1984). Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. The Journal of Comparative Neurology, 229(2), 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Desai, R., & Kaczmarek, L. K. (2007). Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. The Journal of Neuroscience, 27(10), 2617–2627.

    Article  CAS  PubMed  Google Scholar 

  • Yassin, L., Radtke-Schuller, S., Asraf, H., Grothe, B., Hershfinkel, M., Forsythe, I. D., et al. (2014). Nitric oxide signaling modulates synaptic inhibition in the superior paraolivary nucleus (SPN) via cGMP-dependent suppression of KCC2. Frontiers in Neural Circuits, 8, 65. https://doi.org/10.3389/fncir.2014.00065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conny Kopp-Scheinpflug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kopp-Scheinpflug, C., Forsythe, I.D. (2018). Integration of Synaptic and Intrinsic Conductances Shapes Microcircuits in the Superior Olivary Complex. In: Oliver, D., Cant, N., Fay, R., Popper, A. (eds) The Mammalian Auditory Pathways. Springer Handbook of Auditory Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-71798-2_5

Download citation

Publish with us

Policies and ethics