Skip to main content

Existence of Nash Equilibria on Integer Programming Games

  • Conference paper
  • First Online:
Operational Research (APDIO 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 223))

Included in the following conference series:

Abstract

We aim to investigate a new class of games, where each player’s set of strategies is a union of polyhedra. These are called integer programming games. To motivate our work, we describe some practical examples suitable to be modeled under this paradigm. We analyze the problem of determining whether or not a Nash equilibria exists for an integer programming game, and demonstrate that it is complete for the second level of the polynomial hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The equilibrium conditions (2.3) only reflect a player p deviation to strategy in \(X^p\) and not in \(\varDelta ^p\), because a strategy in \(\varDelta ^p\) is a convex combination of strategies in \(X^p\), and thus cannot lead to a better payoff than one in \(X^p\).

  2. 2.

    In specific, a player’s payoff is a summation over all pure profiles of strategies, where each term is the product of the associated binary variables and the associated payoff.

References

  1. A. Caprara, M. Carvalho, A. Lodi, G.J. Woeginger, A study on the computational complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Carvalho, Computation of equilibria on integer programming games, Ph.D. thesis, Faculdade de Ciências da Universidade do Porto (2016)

    Google Scholar 

  3. M. Carvalho, A. Lodi, J.P. Pedroso, A. Viana, Nash equilibria in the two-player kidney exchange game. Math. Programm. 161(1–2), 1–29 (2016). https://doi.org/10.1007/s10107-016-1013-7. ISSN 1436-4646

    MathSciNet  MATH  Google Scholar 

  4. X. Chen, X. Deng, Settling the complexity of two-player nash equilibrium. in 47th Annual IEEE Symposium on Foundations of Computer Science, 2006. FOCS ’06 (2006), pp. 261–272. https://doi.org/10.1109/FOCS.2006.69

  5. C. Daskalakis, P. Goldberg, C. Papadimitriou, The complexity of computing a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009). https://doi.org/10.1137/070699652

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Fudenberg, J. Tirole, Game Theory (MIT Press, Cambridge, 1991)

    MATH  Google Scholar 

  7. S.A. Gabriel, S. Ahmad Siddiqui, A.J. Conejo, C. Ruiz, Solving discretely-constrained nash-cournot games with an application to power markets. Netw. Spat. Econ. 13(3), 307–326 (2013). https://doi.org/10.1007/s11067-012-9182-2. ISSN 1566-113X

    Article  MathSciNet  MATH  Google Scholar 

  8. I.L. Glicksberg, A further generalization of the kakutani fixed point theorem, with application to nash equilibrium points. Proc. Am. Math. Soc. 3(1), 170–174 (1952). https://doi.org/10.2307/2032478. ISSN 00029939

    MathSciNet  MATH  Google Scholar 

  9. M. Köppe, C. Thomas Ryan, M. Queyranne, Rational generating functions and integer programming games. Op. Res. 59(6), 1445–1460 (2011). https://doi.org/10.1287/opre.1110.0964. ISSN 0030-364X

    Article  MathSciNet  MATH  Google Scholar 

  10. M.M. Kostreva, Combinatorial optimization in nash games. Comput. Math. Appl. 25(10–11), 27–34 (1993), URL http://www.sciencedirect.com/science/article/pii/0898122193902784. https://doi.org/10.1016/0898-1221(93)90278-4. ISSN 0898-1221

  11. H. Li, J. Meissner, Competition under capacitated dynamic lot-sizing with capacity acquisition. Int. J. Prod. Econ. 131(2), 535–544 (2011), URL http://www.sciencedirect.com/science/article/pii/S0925527311000375. https://doi.org/10.1016/j.ijpe.2011.01.022. ISSN 0925-5273.

  12. R.D. Mckelvey, A.M. Mclennan, T.L. Turocy, Gambit: software tools for game theory. Version 16.0.0 (2016), http://www.gambit-project.org

  13. J. Nash, Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani, Algorithmic Game Theory (Cambridge University Press, New York, 2007)

    Book  MATH  Google Scholar 

  15. C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, 1994). ISBN 0201530821

    MATH  Google Scholar 

  16. M.V. Pereira, S. Granville, M.H.C. Fampa, R. Dix, L.A. Barroso, Strategic bidding under uncertainty: a binary expansion approach. IEEE Trans. Power Syst. 20(1), 180–188 (2005). https://doi.org/10.1109/TPWRS.2004.840397. ISSN 0885-8950

    Article  Google Scholar 

  17. Y. Pochet, L.A. Wolsey, Production Planning by Mixed Integer Programming, Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006). ISBN 0387299599

    MATH  Google Scholar 

  18. N.D. Stein, A. Ozdaglar, P.A. Parrilo, Separable and low-rank continuous games. Int. J. Game Theory 37(4), 475–504 (2008). https://doi.org/10.1007/s00182-008-0129-2. ISSN 0020-7276

    Article  MathSciNet  MATH  Google Scholar 

  19. B. von Stengel, Special issue of on computation of nash equilibria in finite games. Econ. Theory 42(1), 1–7 (2010). https://doi.org/10.1007/s00199-009-0452-2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was performed while the first author was in the Faculty of Sciences University of Porto and INESC TEC. The first author thanks the support of Institute for data valorisation (IVADO), the Portuguese Foundation for Science and Technology (FCT) through a PhD grant number SFRH/BD/79201/2011 and the ERDF European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and National Funds through the FCT (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013. We thank the referees for comments and questions that helped clarifying the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvalho, M., Lodi, A., Pedroso, J.P. (2018). Existence of Nash Equilibria on Integer Programming Games. In: Vaz, A., Almeida, J., Oliveira, J., Pinto, A. (eds) Operational Research. APDIO 2017. Springer Proceedings in Mathematics & Statistics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-71583-4_2

Download citation

Publish with us

Policies and ethics