Skip to main content

Scaling law of average failure rate and steady-state rate in rocks

  • Chapter
  • First Online:
Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 478 Accesses

Abstract

The evolution properties in the steady stage of a rock specimen are reflective of the damage or weakening growth within and thus are used to determine whether an unstable transition occurs. In this paper, we report the experimental results for rock (granite and marble) specimens tested at room temperature and room humidity under three typical loading modes: quasi-static monotonic loading, brittle creep, and brittle creep relaxation. Deformed rock specimens in current experiments exhibit an apparent steady stage characterized by a nearly constant evolution rate, which dominates the lifetime of the rock specimens. The average failure rate presents a common power–law relationship with the evolution rate in the steady stage, although the exponent is different for different loading modes. The results indicate that a lower ratio of the slope of the secondary stage with respect to the average rate of the entire lifetime implies a more brittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amitrano, D., Grasso, J. R., & Senfaute, G. (2005). Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophysical Research Letters, 32(5), L08314. doi: https://doi.org/10.1029/2004gl022270.

  • Amitrano, D., & Helmstetter, A. (2006). Brittle creep, damage and time to failure in rocks. Journal of Geophysical Research, 111, 1–17, B11201. doi: https://doi.org/10.1029/2005jb004252.

  • Andrade E. N. da C. (1910). On the viscous flow in metals and allied phenomena. Proceedings of the Royal Society of London. Series A, 84, 1.

    Google Scholar 

  • Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research, 89, 4077–4114.

    Google Scholar 

  • Atkinson, B., Meredith, P. (1987) The theory of subcritical crack growth with applications to minerals and rocks. In: Fracture mechanics of rocks (pp. 111–166). New York: Academic Press.

    Google Scholar 

  • Bai, Y. L., Wang, H. Y., Xia, M. F., & Ke, F. J. (2005). Statistical mesomechanics of solid, liking coupled multiple space and time scales. Applied Mechanics Review, 58, 372–388.

    Google Scholar 

  • Baud, P., & Meredith, P. (1997). Damage accumulation during triaxial creep of darley dale sandstone from pore volumetry and acoustic emission. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 34(3–4), 1–8.

    Google Scholar 

  • Benioff, H. (1951). Earthquake and rock creep. Bulletin of the Seismological Society of America, 41(1), 31–62.

    Google Scholar 

  • Boukharov, G., Chanda, M., & Boukharov, N. (1995). The three processes of brittle crystalline rock creep. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 32(4), 325–335.

    Google Scholar 

  • Brantut, N., Heap, M. J., Baud, P., & Meredith, P. G. (2014). Rateand strain-dependent brittle deformation of rocks. Journal of Geophysical Research, 119, 1818–1836. doi: https://doi.org/10.1002/2013jb010448.

  • Brantut, N., Heap, M. J., Meredith, P. G., & Baud, P. (2013). Timedependent cracking and brittle creep in crustal rocks: a review. Journal of Structural Geology, 52, 17–43.

    Google Scholar 

  • Charles, R. (1958). The static fatigue of glass. Journal of Applied Physics, 29, 1549–1560.

    Google Scholar 

  • Chen, Z., et al. (2000). Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. Journal of Geophysical Research, 105, 16215–16227.

    Google Scholar 

  • Cruden, D. (1974). The static fatigue of brittle rock under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11, 67–73.

    Google Scholar 

  • Das, S., & Scholz, C. (1981). Theory of time-dependent rupture in the Earth. Journal of Geophysical Research, 86, 6039–6051.

    Google Scholar 

  • Du, Z. Z., & McMeeking, R. M. (1995). Creep models for metal matrix composites with long brittle fibers. Journal of the Mechanics and Physics of Solids, 43, 701–726.

    Google Scholar 

  • Guarino, A., Ciliberto, S., Garcimartin, A., Zei, M., & Scoretti, R. (2002). Failure time and critical behavior of fracture precursors in heterogeneous materials. European Physical Journal B: Condensed Matter and Complex Systems, 26, 141–151.

    Google Scholar 

  • Hao, S. W., Liu, C., Lu, C. S., & Elsworth, D. (2016). A relation to predict the failure of materials and potential application to volcanic eruptions and landslides. Scientific Reports, 6, e27877. doi: https://doi.org/10.1038/srep27877.

  • Hao, S. W., Rong, F., Lu, M. F., Wang, H. Y., Xia, M. F., Ke, F. J., et al. (2013). Power–law singularity as a possible catastrophe warning observed in rock experiments. International Journal of Rock Mechanics and Mining Sciences, 60, 253–262.

    Google Scholar 

  • Hao, S. W., Wang, H. Y., Xia, M. F., Ke, F. J., & Bai, Y. L. (2007). Relationship between strain localization and catastrophic failure. Theoretical and Applied Fracture Mechanics, 48, 41–49.

    Google Scholar 

  • Hao, S. W., Xia, M. F., Ke, F. J., & Bai, Y. L. (2010). Evolution of localized damage zone in heterogeneous media. International Journal of Damage Mechanics, 19(7), 787–804.

    Google Scholar 

  • Hao, S. W., Zhang, B. J., Tian, J. F., & Elsworth, D. (2014). Predicting time-to-failure in rock extrapolated from secondary creep. Journal of Geophysical Research Solid Earth, 119, 1942–1953. doi: https://doi.org/10.1002/2013jb010778.

  • Heap, M. J., Baud, P., Meredith, P. G., Bell, A. F., & Main, I. G. (2009). Time-dependent brittle creep in Darley Dale sandstone. Journal of Geophysical Research Solid Earth, 114, B07203. doi: https://doi.org/10.1029/2008jb006212.

  • Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., Bell, A. F., & Main, I. G. (2011). Brittle creep in basalt and its application to time-dependent volcano deformation. Earth and Planetary Science Letters, 37(1–2), 71–82.

    Google Scholar 

  • Hundson, J. A., Crouch, S. L., & Fairhurst, C. (1972). Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Engineering Geology, 6, 155–189.

    Google Scholar 

  • Jeager, J. C., Cook, N. G. W., & Zimmerman, R. (2007). Fundamentals of rock mechanics (4th ed.). London: Wiley-Blackwell.

    Google Scholar 

  • Kilburn, C. R. J. (2012). Precursory deformation and fracture before brittle rock failure and potential application to volcanic unrest. Journal of Geophysical Research, 117, B02211. doi: https://doi.org/10.1029/2011jb008703.

  • Kranz, R. (1980). The effect of confining pressure and difference stress on static fatigue of granite. Journal of Geophysical Research, 85, 1854–1866.

    Google Scholar 

  • Kranz, R., Harris, W., & Carter, N. (1982). Static fatigue of granite at 200°C. Geophysical Research Letters, 9(1), 1–4.

    Google Scholar 

  • Labuz, J. F., & Biolzi, L. (1991). Class I vs class II stability: a demonstration of size effect. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 28(2/3), 199–205.

    Google Scholar 

  • Lienkaemper, J. J., Galehouse, J. S., & Simpson, R. W. (1997). Creep response of the Hayward fault to stress changes caused by the Loma Prieta earthquake. Science, 276, 2014–2016.

    Google Scholar 

  • Lockner, D. A. (1993). The role of acoustic emission in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 30(7), 883–899.

    Google Scholar 

  • Lockner, D. A. (1998). A generalized law for brittle deformation of westerly granite. Journal of Geophysical Research, 103(B3), 5107–5123.

    Google Scholar 

  • Lockner, D. A., & Byerlee, J. D. (1980). Development of fracture planes during creep in granite. In H. R. Hardy, F. W. Leiton, (Eds.) Proceedings of 2nd conference on acoustic emission/microseismic activity in geological structures and materials (pp 11–25). Clausthal-Zellerfeld, Germany: Trans Tech Publications.

    Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidorin, A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature, 350(7), 39–42.

    Google Scholar 

  • Main, I. (2000). A damage mechanics model for power–law creep and earthquake aftershock and foreshock sequences. Geophysical Journal International, 142, 151–161.

    Google Scholar 

  • Meade, B. J. (2007). Present-day kinematics at the India–Asia collision zone. Geology, 35, 81–84.

    Google Scholar 

  • Nechad, H., Helmstetter, A., Guerjouma, R. E., & Sornette, D. (2005). Andrade creep and critical time-to-failure laws in heterogeneous materials. Physical Review Letters, 94, 045501.

    Google Scholar 

  • Okubo, S., Nishimatsu, Y., & Fukui, K. (1991). Complete creep curves under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 28(1), 77–82.

    Google Scholar 

  • Omori, F. (1894). On the aftershocks of eathquakes. Journal of the College of Science, Imperial University of Tokyo, 7, 111–120.

    Google Scholar 

  • Perfettin, H., & Avouac, J. P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. Journal of Geophysical Research, 109, B02304. doi: https://doi.org/10.1029/2003jb002488.

  • Petley, D., Bulmer, M., & Murphy, W. (2002). Patterns of movement in rotational and translational landslides. Geology, 30(8), 719–722.

    Google Scholar 

  • Rudnicki, J. W., & Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23, 371–394.

    Google Scholar 

  • Saito, M. (1969). Forecasting time of slope failure by tertiary creep. In Proc. 7th Int. Conf. Soil Mechanics and Foundation Engineering, Mexico City (Vol. 2, pp. 677–683).

    Google Scholar 

  • Saito, M., Uezawa, H. (1961) Failure of soil due to creep. In Proc. 5th Int. Conf. Soil Mechanics and Foundation Engineering, Montreal (Vol. 1, pp. 315–318).

    Google Scholar 

  • Salamon, M. D. G. (1970). Stability, instability and design of pillar workings. International Journal of Rock Mechanics and Mining Sciences, 7(6), 613–631.

    Google Scholar 

  • Scholz, C. (1968). Mechanism of creep in brittle rock. Journal of Geophysical Research, 73(10), 3295–3302.

    Google Scholar 

  • Scholz, C. (1972). Static fatigue of quartz. Journal of Geophysical Research, 77, 2104–2114.

    Google Scholar 

  • Shen, Z. K., Lu, J. N., Wang, M., & Burgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110, 11409. https://doi.org/10.1029/2004jb003421.

  • Singh, D. P. (1975). A study of creep of rocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 12, 271–276.

    Google Scholar 

  • Utsu, T. (1961). Statistical study on the occurrence of aftershocks. Geophysical Magazine, 30, 521–605.

    Google Scholar 

  • Voight, B. (1988). A method for prediction of volcanic eruption. Nature, 332, 125–130.

    Google Scholar 

  • Voight, B. (1989). A relation to describe rate-dependent material failure. Science, 243, 200–203.

    Google Scholar 

  • Wiederhorn, S. M., & Bolz, L. H. (1970). Stress corrosion and static fatigue of glass. Journal of the American Ceramic Society, 50, 543–548.

    Google Scholar 

  • Zhang, P. Z. (2013). Beware of slowly slipping faults. Nature Geoscience, 6, 323–324.

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant 11672258), National Basic Research Program of China (Grant 2013CB834100) and Natural Science Foundation of Hebei Province (Grant D2015203398). We acknowledge useful comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwang Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hao, S., Liu, C., Wang, Y., Chang, F. (2018). Scaling law of average failure rate and steady-state rate in rocks. In: Zhang, Y., Goebel, T., Peng, Z., Williams, C., Yoder, M., Rundle, J. (eds) Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-71565-0_2

Download citation

Publish with us

Policies and ethics