Skip to main content

Cell Culture on Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Cell culture is a powerful in vitro characterization technique to optimize the properties of a biomaterial for in vivo biomedical use by conversely revealing potential sources of cytotoxicity. A comprehensive literature survey of the range of cell types cultured on porous silicon is given, together with a discussion of how surface chemistry, topography, and porosity gradients affect cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA, Nehilla BJ, Reisig KV, Gaborski TR, Fang DZ, Striemer CC, Fauchet PM, McGrath JL (2010) Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture. Biomaterials 31(20):5408–5417

    Article  CAS  Google Scholar 

  • Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51:343–351

    Google Scholar 

  • Alvarez SD, Derfus AM, Schwartz MP, Bhatia SN, Sailor MJ (2009) The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials 30(1):26–34

    Article  CAS  Google Scholar 

  • Bayliss SC, Buckberry LD, Harris P, Rousseau C (1997a) Nanostructured semiconductors: compatibility with biomaterials. Thin Solid Films 297:308–310

    Article  CAS  Google Scholar 

  • Bayliss SC, Harris P, Buckberry LD, Rousseau C (1997b) Phosphate and cell growth on nanostructured semiconductors. J Mat Sci Lett 16:737–740

    Article  CAS  Google Scholar 

  • Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater 11(4):318–321

    Article  CAS  Google Scholar 

  • Bayliss SC, Buckberry LD, Harris P, Tobin M (2000) Nature of the silicon-animal cell interface. J Porous Mater 7:191–195

    Article  CAS  Google Scholar 

  • Ben-Tabou de Leon S, Sa’ar A, Oren R, Spira ME, Yitzchaik S (2004) Neurons culturing and biophotonic sensing using porous silicon. Appl Phys Lett 84(22):4361–4363

    Article  CAS  Google Scholar 

  • Bimbo LM, Sarparanta M, Makila E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4(10):3184–3192

    Article  CAS  Google Scholar 

  • Bisi O, Ossicinib S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126

    Article  CAS  Google Scholar 

  • Buriak JM, Allen MJ (1998) Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc 120:1339–1340

    Article  CAS  Google Scholar 

  • Chin V, Collins BE, Sailor MJ, Bhatia SN (2001) Compatibility of primary hepatocytes with oxidized nanoporous silicon. Adv Mater 13(24):1877–1880

    Article  CAS  Google Scholar 

  • Chou L, Firth JD, Uitto VJ, Brunette DM (1995) Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability. Secretion and assembly in human fibroblasts. J Cell Sci 108(4):1563–1573

    CAS  Google Scholar 

  • Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1991) Cell guidance by ultrafine topography in vitro. J Cell Sci 99(1):73–77

    Google Scholar 

  • Clements LR, Wang P-Y, Harding F, Tsai W-B, Thissen H, Voelcker NH (2011) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys Status Solidi A 208(6):1440–1445

    Article  CAS  Google Scholar 

  • Clements LR, Wang P-Y, Tsai W-B, Thissen H, Voelcker NH (2012) Electrochemistry-enabled fabrication of orthogonal nanotopography and surface chemistry gradients for high-throughput screening. Lab Chip 12:1480–1486

    Article  CAS  Google Scholar 

  • Coffer JL, Whitehead MA, Nagasha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie RS, Canham LT (2005) Porous silicon-based scaffolds for tissue engineering and other biomedical applications. Phys Status Solidi A 202(8):1451–1455

    Article  CAS  Google Scholar 

  • Cole MA, Voelcker NH, Thissen H (2007) Electro-induced protein deposition on low-fouling surfaces. Smart Mater Struct 16(6):2222

    Article  CAS  Google Scholar 

  • Collins BE, Dancil KPS, Abbi G, Sailor MJ (2002) Determining protein size using an electrochemically machined pore gradient in silicon. Adv Funct Mater 12(3):187–191

    Article  CAS  Google Scholar 

  • Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573–1583

    Article  CAS  Google Scholar 

  • Fan D, De Rosa E, Murphy MB, Peng Y, Smid CA, Chiappini C, Liu X, Simmons P, Weiner BK, Ferrari M, Tasciotti E (2012) Mesoporous silicon-PLGA composite microspheres for the double controlled release of biomolecules for orthopedic tissue engineering. Adv Funct Mater 22(2):282–293

    Article  CAS  Google Scholar 

  • Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730

    Article  CAS  Google Scholar 

  • Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S (2006) Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J 52(3):221–227

    Article  CAS  Google Scholar 

  • Freshney RI (2005) Culture of animal cells: a manual of basic technique. Wiley, New York

    Book  Google Scholar 

  • Gentile F, La Rocca R, Marinaro G, Nicastri A, Toma A, Paonessa F, Cojoc G, Liberale C, Benfenati F, di Fabrizio E, Decuzzi P (2012) Differential cell adhesion on mesoporous silicon substrates. ACS Appl Mater Interfaces 4(6):2903–2911

    Article  CAS  Google Scholar 

  • Genzer J, Bhat RR (2008) Surface-bound soft matter gradients. Langmuir 24(6):2294–2317

    Article  CAS  Google Scholar 

  • Groth T, Altankov G (1996) Studies on cell-biomaterial interaction: role of tyrosine phosphorylation during fibroblast spreading on surfaces varying in wettability. Biomaterials 17:1227–1234

    Article  CAS  Google Scholar 

  • Hajj-Hassan M, Khayyat-Kholghi M, Wang H, Chodavarapu V, Henderson JE (2011) Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds. J Biomed Mater Res A 99A(2):269–274

    Article  CAS  Google Scholar 

  • Ito Y (1999) Surface micropatterning to regulate cell functions. Biomaterials 20:2333–2342

    Article  CAS  Google Scholar 

  • Janshoff A, Lorenz B, Pietuch A, Fine T, Tarantola M, Steinem C, Wegener J (2010) Cell adhesion to ordered pores: consequences for cellular elasticity. J Adhes Sci Technol 24(13/14):2287–2300

    Article  CAS  Google Scholar 

  • Johansson F, Kanje M, Eriksson C, Wallman L (2005) Guidance of neurons on porous patterned silicon: is pore size important? Phys Status Solidi C 2(9):3258–3262

    Article  CAS  Google Scholar 

  • Johansson F, Kanje M, Linsmeier CE, Wallman L (2008) The influence of porous silicon on axonal outgrowth in vitro. IEEE Trans Biomed Eng 55(4):1447–1449

    Article  Google Scholar 

  • Johansson F, Wallman L, Danielsen N, Schouenborg J, Kanje M (2009) Porous silicon as a potential electrode material in a nerve repair setting: tissue reactions. Acta Biomater 5(6):2230–2237

    Article  CAS  Google Scholar 

  • Khung Y-L, Graney SD, Voelcker NH (2006) Micropatterning of porous silicon films by direct laser writing. Biotechnol Prog 22(5):1388–1393

    Article  CAS  Google Scholar 

  • Khung YL, Barritt G, Voelcker NH (2008) Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp Cell Res 314(4):789–800

    Article  CAS  Google Scholar 

  • Laaksonen T, Santos H, Vihola H, Salonen J, Riikonen J, Heikkilä T, Peltonen L, Kumar N, Murzin D, Lehto V, Hirvonen J (2007) Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem Res Toxicol 20(12):1913–1918

    Article  CAS  Google Scholar 

  • Low SP (2008) Development of porous silicon as a scaffold for the delivery of cells into ocular tissue. Flinders University, Department of Chemistry

    Google Scholar 

  • Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface modified porous silicon. Biomaterials 27:4538–4546

    Article  CAS  Google Scholar 

  • Masters J (2000) Animal cell culture: a practical approach. OUP, Oxford

    Google Scholar 

  • Meraz IM, Melendez B, Gu J, Wong STC, Liu X, Andersson HA, Serda RE (2012) Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm 9(7):2049–2062

    Article  CAS  Google Scholar 

  • Michelmore A, Clements LR, Steele DA, Voelcker NH, Szili EJ (2012) Gradient technology for high-throughput screening of interactions between cells and nanostructured materials. J Nanomater 2012:1–7

    Article  CAS  Google Scholar 

  • Noval AM, Vaquero VS, Quijorna EP, Costa VT, Pérez DG, Méndez LG, Montero I, Palma RJM, Font AC, Ruiz JPG, Silván MM (2012) Aging of porous silicon in physiological conditions: cell adhesion modes on scaled 1D micropatterns. J Biomed Mater Res A 100A(6):1615–1622

    Article  CAS  Google Scholar 

  • Pap AE, Kordás K, George TF, Leppävuori S (2004) Thermal oxidation of porous silicon: study on reaction kinetics. J Phys Chem B 108(34):12744–12747

    Article  CAS  Google Scholar 

  • Salonen J, Lehto VP, Björkqvist M, Laine E, Niinistö L (2000) Studies of thermally-carbonized porous silicon surfaces. Phys Status Solidi A 182(1):123–126

    Article  CAS  Google Scholar 

  • Salonen J, Björkqvist M, Laine E, Niinistö L (2004) Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci 225:389–394

    Article  CAS  Google Scholar 

  • Sapelkin AV, Bayliss SC, Unal B, Charalambou A (2006) Interaction of B50 rat hippocampal cells with stain-etched porous silicon. Biomaterials 27(6):842–846

    Article  CAS  Google Scholar 

  • Sarparanta M, Bimbo LM, Rytkönen J, Mäkilä E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012a) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability. Plasma protein adsorption and biodistribution. Mol Pharm 9(3):654–663

    Article  CAS  Google Scholar 

  • Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012b) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33(11):3353–3362

    Article  CAS  Google Scholar 

  • Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30(2):145–155

    Article  CAS  Google Scholar 

  • Sun W, Puzas JE, Sheu TJ, Liu X, Fauchet PM (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19(7):921–924

    Article  Google Scholar 

  • Sweetman MJ, Harding FJ, Graney SD, Voelcker NH (2011) Effect of oligoethylene glycol moieties in porous silicon surface functionalisation on protein adsorption and cell attachment. Appl Surf Sci 257(15):6768–6774

    Article  CAS  Google Scholar 

  • Sweetman MJ, Ronci M, Ghaemi SR, Craig JE, Voelcker NH (2012) Porous silicon films micropatterned with bioelements as supports for mammalian cells. Adv Funct Mater 22(6):1158–1166

    Article  CAS  Google Scholar 

  • Thompson CM, Nieuwoudt M, Ruminski AM, Sailor MJ, Miskelly GM (2010) Electrochemical preparation of pore wall modification gradients across thin porous silicon layers. Langmuir 26(10):7598–7603

    Article  CAS  Google Scholar 

  • Von Recum AF, Van Kooten TG (1996) The influence of micro-topography on cellular response and the implications for silicone implants. J Biomater Sci Polym Ed 7(2):181–198

    Article  Google Scholar 

  • Wang Q, Ni H, Pietzsch A, Hennies F, Bao Y, Chao Y (2011) Synthesis of water-dispersible photoluminescent silicon nanoparticles and their Use in biological fluorescent imaging. J Nanopart Res 13(1):405–413

    Article  CAS  Google Scholar 

  • Wang P-Y, Clements LR, Thissen H, Jane A, Tsai W-B, Voelcker NH (2012a) Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients. Adv Funct Mater 22(16):3414–3423

    Article  CAS  Google Scholar 

  • Wang P-Y, Voelcker NH, Tsai W-B (2012b) Screening the attachment and spreading of bone marrow-derived and adipose-derived mesenchymal stem cells on porous silicon gradients. RSC Advances 2:12857–12865

    Article  CAS  Google Scholar 

  • Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3 T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41(3):422–430

    Article  CAS  Google Scholar 

  • Webb K, Hlady V, Tresco PA (2000) Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res 49:362–368

    Article  CAS  Google Scholar 

  • Yanagisawa I, Sakuma H, Shimura M, Wakamatsu Y, Yanagisawa S, Sairenji E (1989) The effects of “wettability” of biomaterials on culture cells. J Oral Implant 15(3):168–177

    CAS  Google Scholar 

  • Yang C-Y, Huang L-Y, Shen T-L, Yeh JA (2010) Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. Eur Cell Mater 20:415–430

    Article  CAS  Google Scholar 

  • Zeidman T, Parush R, Massad NA, Segal E (2011) Compatibility of cancer cells with nanostructured oxidized porous silicon substrates. Phys Status Solidi C 8(6):1903–1907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas H. Voelcker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Voelcker, N.H., Low, S.P. (2018). Cell Culture on Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_50

Download citation

Publish with us

Policies and ethics