Skip to main content

Malignancy and Hemostasis

  • Chapter
  • First Online:
Hemostasis in Dentistry
  • 899 Accesses

Abstract

The presence of cancer may predispose the patient to a hypercoagulable state. Approximately 15% of all patients with a malignancy may be affected by some form of thromboembolic disease. Trousseau’s syndrome relates to this predisposition to both arterial and venous coagulation in this cohort of patients. This well-documented state affects the local tumor site as well as causes these systemic effects. The additional burden on the patient of potential immobility, chemotherapy, surgery, indwelling lines, and nutritional deficit make thromboembolic disease more prevalent. It must also be borne in mind that malignant disease may also result in a greater bleeding tendency due to dysfunction with components of the coagulation cascade. Additionally, many patients may be on anticoagulant therapy, and bone marrow disorders such as leukemia may cause thrombo-hemorrhagic complications.

The oral surgical management of cancer patients in regard to hemostasis is a complex interplay of history, physical findings, laboratory values, and provider preference. There is limited high-quality information available regarding the specific oral surgery population, and therefore the best recommendations are extrapolated from available studies and guidelines in the medical and surgical literature. The ultimate decision is at the discretion of the treating provider to ensure procedures are executed appropriately, and there is a plan for monitoring in the postoperative period. Certainly the patient and treatment factors which place patients at greater risk for bleeding should be evaluated together in consultation with the patient’s oncologist prior to surgery. Once the risk of bleeding is established, laboratory testing guides consideration of preoperative transfusion, further medical management, or alteration of the surgical plan to reduce risk of bleeding intraoperatively. Scheduling surgery to accommodate for the expected bone marrow recovery following the drop in the patient’s blood counts is also a helpful measure. Reducing the extent of surgery and dividing treatment into multiple visits can decrease the stress on the patient’s hemostatic mechanisms. Careful attention to surgical technique to minimize tissue trauma and blood loss is essential, and local hemostatic measures discussed elsewhere are helpful adjuncts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Letai A, Kuter DJ. Cancer, coagulation and anticoagulation. Oncologist. 1999;4:443–9.

    PubMed  Google Scholar 

  2. Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood. 2007;110(6):1723–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nagy JA, Brown LF, Senger DR, et al. Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta. 1989;948(3):305–26.

    PubMed  Google Scholar 

  4. Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol. 2009;27(29):4839–47.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jain A, Gupta N, Singh T, et al. A study of haemostatic parameters in patients of chronic myeloid leukaemia. J Clin Diagn Res. 2016;10(7):OC19–23.

    PubMed  PubMed Central  Google Scholar 

  6. Zhu YW, Feng TB, Zhou XJ, et al. Routine hemostasis and hemogram parameters: valuable assessments for coagulation disorder and chemotherapy in cancer patients. Chin Med J. 2016;129(15):1772–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langer F, Bokemeyer C. Crosstalk between cancer and haemostasis. Hamostaseologie. 2012;32:95–104.

    Article  PubMed  Google Scholar 

  8. Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol. 2002;3:27–34.

    Article  PubMed  Google Scholar 

  9. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost. 2013;11(2):223–33.

    Article  PubMed  Google Scholar 

  10. Falanga A, Marchetti M, Vignoli A, et al. Clotting mechanisms and cancer: implications in thrombus formation and tumor progression. Clin Adv Hematol Oncol. 2003;1:673–8.

    PubMed  Google Scholar 

  11. Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie. 2015;34:54–62.

    Article  Google Scholar 

  12. Tafur AJ, Dale G, Cherry M, et al. Prospective evaluation of protein C and factor VIII in prediction of cancer-associated thrombosis. Thromb Res. 2015;136(6):1120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alberio L, Safa O, Clemetson KJ, et al. Surface expression and functional characterization of alpha-granule factor V in human platelets: effects of ionophore A23187, thrombin, collagen, and convulxin. Blood. 2000;95:1694–702.

    PubMed  Google Scholar 

  14. Vormittag R, Simanek R, Ay C, et al. High factor VIII levels independently predict venous thromboembolism in cancer patients: the cancer and thrombosis study. Arterioscler Thromb Vasc Biol. 2009;29:2176–81.

    Article  PubMed  Google Scholar 

  15. Donati MB. Cancer and thrombosis: from phlegmasia alba dolens to transgenic mice. Thromb Haemost. 1995;74:278–81.

    PubMed  Google Scholar 

  16. Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost. 2006;32(Suppl 1):61–8.

    Article  PubMed  Google Scholar 

  17. Palumbo JS. Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. Semin Thromb Hemost. 2008;34:154–60.

    Article  PubMed  Google Scholar 

  18. Falanga A. Biological and clinical aspects of anticancer effects of antithrombotics. Pathophysiol Haemost Thromb. 2003/2004;33:389–92.

    Article  PubMed  Google Scholar 

  19. Mackman N. The role of tissue factor and factor VIIa in haemostasis. Anesth Analg. 2009;108(5):1447–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ohta S, Wada H, Nakazaki T, et al. Expression of tissue factor is associated with clinical features and angiogenesis in prostate cancer. Anticancer Res. 2002;22:2991–6.

    PubMed  Google Scholar 

  21. Garnier D, Milsom C, Magnus N, et al. Role of the tissue factor pathway in the biology of tumor initiating cells. Thromb Res. 2010;125(Suppl 2):S44–50.

    Article  PubMed  Google Scholar 

  22. Rong Y, Durden DL, Van Meir EG, et al. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65:529–39.

    Article  PubMed  Google Scholar 

  23. Khorana AA, Ahrendt SA, Ryan CK, et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res. 2007;13:2870–5.

    Article  PubMed  Google Scholar 

  24. Yu JL, May L, Lhotak V, et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood. 2005;105:1734–41.

    Article  PubMed  Google Scholar 

  25. Abe K, Shoji M, Chen J, et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA. 1999;96:8663–8.

    Article  PubMed  Google Scholar 

  26. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15:6830–40.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Del Conde I, Bharwani LD, Dietzen DJ, et al. Microvesicle-associated tissue factor and Trousseau’s syndrome. J Thromb Haemost. 2007;5:70–4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Im JH, Fu W, Wang H, et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 2004;64:8613–9.

    Article  PubMed  Google Scholar 

  29. Amirkhosravi A, Mousa SA, Amaya M, et al. Assessment of anti-metastatic effects of anticoagulant and antiplatelet agents using animal models of experimental lung metastasis. Methods Mol Biol. 2010;663:241–59.

    Article  PubMed  Google Scholar 

  30. Caine GJ, Stonelake PS, Lip GYH, et al. The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia. 2002;4(6):465–73.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nemerson Y. The tissue factor pathway of blood coagulation. Semin Hematol. 1992;29(3):170–6.

    PubMed  Google Scholar 

  32. Semeraro N, Colucci M. Tissue factor in health and disease. Thromb Haemost. 1997;78(1):759–64.

    Article  PubMed  Google Scholar 

  33. Gordon SG, Mourad AM. The site of activation of factor X by cancer procoagulant. Blood Coagul Fibrinolysis. 1991;2(6):735–9.

    Article  PubMed  Google Scholar 

  34. Mielicki WP, Gordon SG. Three-stage chromogenic assay for the analysis of activation properties of factor X by cancer procoagulant. Blood Coagul Fibrinolysis. 1993;4(3):441–6.

    Article  PubMed  Google Scholar 

  35. Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry. 1985;24(20):5558–67.

    Article  PubMed  Google Scholar 

  36. Donati MB, Gambacorti-Passerini C, Casali B, et al. Cancer procoagulant in human tumor cells: evidence from melanoma patients. Cancer Res. 1986;46(12 Pt 1):6471–4.

    PubMed  Google Scholar 

  37. Gordon SG, Cross BA. An enzyme-linked immunosorbent assay for cancer procoagulant and its potential as a new tumor marker. Cancer Res. 1990;50(19):6229–34.

    PubMed  Google Scholar 

  38. Nieswandt B, Hafner M, Echtenacher B, et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–300.

    PubMed  Google Scholar 

  39. Palumbo JS, Talmage KE, Massari JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;105(1):178–85.

    Article  PubMed  Google Scholar 

  40. Placke T, Örgel M, Schaller M, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8.

    Article  PubMed  Google Scholar 

  41. Placke T, Salih HR, Kopp HG. GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. J Immunol. 2012;189(1):154–60.

    Article  PubMed  Google Scholar 

  42. Mehta P, Lawson D, Ward MB, et al. Effect of human tumor cells on platelet aggregation: potential relevance to pattern of metastasis. Cancer Res. 1986;46(10):5061–3.

    PubMed  Google Scholar 

  43. Fäldt R, Ankerst J, Zoucas E. Inhibition of platelet aggregation by myeloid leukaemic cells demonstrated in vitro. Br J Haematol. 1987;66(4):529–34.

    Article  PubMed  Google Scholar 

  44. Pulte D, Furman RR, Broekman MJ, et al. CD39 expression on T lymphocytes correlates with severity of disease in patients with chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2011;11(4):367–72.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jaime-Pérez JC, Cantú-Rodríguez OG, Herrera-Garza JL, et al. Platelet aggregation in children with acute lymphoblastic leukemia during induction of remission therapy. Arch Med Res. 2004;35(2):141–4.

    Article  PubMed  Google Scholar 

  46. Nouh MA, Inui M, Kakehi Y. Renal cell carcinoma with IVC thrombi; current concepts and future perspectives. Clin Med Oncol. 2008;2:247–56.

    PubMed  PubMed Central  Google Scholar 

  47. Mootha RK, Butler R, Laucirica R, et al. Renal cell carcinoma with infra renal vena caval tumor thrombus. Urology. 1999;54:561–5.

    Article  PubMed  Google Scholar 

  48. Heit JA, Silverstein MD, Mohr DN, et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000;160:809–15.

    Article  PubMed  Google Scholar 

  49. Blom JW, Vanderschoot JP, Oostindier MJ, et al. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. J Thromb Haemost. 2006;4:529–35.

    Article  PubMed  Google Scholar 

  50. Khorana AA. Cancer and coagulation. Am J Hematol. 2012;87:S82–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fisher B, Constantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node negative breast cancer who have estrogen-receptor positive tumors. N Engl J Med. 1989;320:479–84.

    Article  PubMed  Google Scholar 

  52. Pritchard KI, Paterson AHG, Paul NA, et al. Increased thromboembolic complications with concurrent tamoxifen and chemotherapy in a randomised trial of adjuvant therapy for women with breast cancer. J Clin Oncol. 1996;14:2731–7.

    Article  PubMed  Google Scholar 

  53. Moore RA, Adel N, Riedel E, et al. High incidence of thromboembolic events in patients treated with Cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol. 2011;29(25):3466–73.

    Article  PubMed  Google Scholar 

  54. Otten H-MMB, Mathijssen J, ten Cate H, et al. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: an underestimated phenomenon. Arch Intern Med. 2004;164(2):190–4.

    Article  PubMed  Google Scholar 

  55. Dursun B, He Z, Somerset H, et al. Caspases and calpain are independent mediators of Cisplatin-induced endothelial cell necrosis. Am J Physiol Renal Physiol. 2006;291(3):F578–87.

    Article  PubMed  Google Scholar 

  56. Togna GI, Togna AR, Franconi M, et al. Cisplatin triggers platelet activation. Thromb Res. 2000;99(5):503–9.

    Article  PubMed  Google Scholar 

  57. Bona R. Thrombotic complications of central venous catheters in cancer patients. Semin Thromb Haemost. 1999;25:147–55.

    Article  Google Scholar 

  58. Falanga A, Marchetti M. Anticancer treatment and thrombosis. Thromb Res. 2012;129(3):353–9.

    Article  PubMed  Google Scholar 

  59. DeCicco M, Matovic M, Balesterri L, et al. Central venous thrombosis: an early and frequent complication in cancer patients bearing long-term silastic catheter. A prospective study. Thromb Res. 1997;86:101–13.

    Article  Google Scholar 

  60. Koksoy C, Kuzu A, Erden I, et al. The risk factors in central venous catheter-related thrombosis. Aust N Z J Surg. 1995;65:796–8.

    Article  PubMed  Google Scholar 

  61. Monreal M, Raventos A, Lerma R, et al. Pulmonary embolism in patients with upper extremity DVT associated to venous central lines—a prospective study. Thromb Haemost. 1994;72:548–50.

    PubMed  Google Scholar 

  62. Houry S, Georgeac C, Hay JM, et al. A prospective multicenter evaluation of preoperative hemostatic screening tests. Am J Surg. 1995;170:19–23.

    Article  PubMed  Google Scholar 

  63. Sun NC, McAfee WM, Hum GJ, et al. Haemostatic abnormalities in malignancy: a prospective study in one hundred eight patients. Am J Clin Pathol. 1979;71:10–6.

    Article  PubMed  Google Scholar 

  64. Mohammed M, Mansoor M, Taher M. Hemostatic derangements in patients with solid malignant tumors. J Pak Med Stud. 2013;3(1):1–9.

    Google Scholar 

  65. Agarwal AM, Prchal JT. Anemia associated with marrow infiltration (chapter 44). In: Lichtman MA, Kipps TJ, Seligsohn U, editors. Williams hematology. 8th ed. New York, NY: McGraw-Hill; 2010.

    Google Scholar 

  66. Kuter DJ. Managing thrombocytopenia associated with cancer chemotherapy. Oncology. 2015;29(4):282–94.

    PubMed  Google Scholar 

  67. Pedersen-Bjergaard J. Radiotherapy and chemotherapy-induced myelodysplasia and acute myeloid leukemia: a review. Leuk Res. 1992;16:61.

    Article  PubMed  Google Scholar 

  68. Glassman AB. Hemostatic abnormalities associated with cancer and its therapy. Ann Clin Lab Sci. 1997;27(6):391–5.

    PubMed  Google Scholar 

  69. Shimazaki C, Inabi T, Uchiyama H, et al. Serum thrombopoietin levels in patients undergoing autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 1997;19:771–5.

    Article  PubMed  Google Scholar 

  70. Manzullo EF, Sahai SK, Weed HG. Preoperative evaluation and management of patients with cancer. In: Post TW, editor. UpToDate. Waltham, MA: UpToDate; 2014.

    Google Scholar 

  71. Thatishetty AV, Agresti N, O’Brien CB. Chemotherapy-induced hepatotoxicity. Clin Liver Dis. 2013;17(4):671–86.

    Article  PubMed  Google Scholar 

  72. Glaspy JA. Disturbances in hemostasis in patients with B-cell malignancies. Semin Thromb Hemostat. 1992;18:440–8.

    Article  Google Scholar 

  73. Fellin F. Perioperative evaluation of patients with hematologic disorders (chapter 6). In: Merli GJ, Weitz HH, editors. Medical management of the surgical patient. 3rd ed. Philadelphia, PA: Elsevier; 2008.

    Google Scholar 

  74. Wu Y, Aravind S, Ranganathan G, et al. Anemia and thrombocytopenia in patients undergoing chemotherapy for solid tumors: a description study of a large outpatient oncology practice database, 2000–2007. Clin Ther. 2009;31(Pt 2):2416–32.

    Article  PubMed  Google Scholar 

  75. Cairo MS. Dose reductions and delays: limitations of myelosuppressive chemotherapy. Oncology. 2000;9(Suppl 8):21–31.

    Google Scholar 

  76. Dutcher JP, Schiffer CA, Aisner J, et al. Incidence of thrombocytopenia and serious hemorrhage among patients with solid tumors. Cancer. 1984;53:557–62.

    Article  PubMed  Google Scholar 

  77. Elting L, Rubenstein E, Loewy J, et al. Incidence and outcomes of chemotherapy-induced thrombocytopenia in patients with solid tumors. Support Care Cancer. 1996;4:238.

    Google Scholar 

  78. Piatek C, Akhtari M. Thrombocytopenia: optimizing approaches in cancer patients. Oncology. 2015;29(4):297–8.

    PubMed  Google Scholar 

  79. Gaydos LA, Freireich EJ, Mantel N. The quantitative relation between platelet count and hemorrhage in patients with acute leukemia. N Engl J Med. 1962;266:905–9.

    Article  PubMed  Google Scholar 

  80. Pisciotto PT, Benson K, Hume H, et al. Prophylactic versus therapeutic platelet transfusion practices in hematology and/or oncology patients. Transfusion. 1995;35:498–502.

    Article  PubMed  Google Scholar 

  81. Friedmann AM, Sengul H, Lehmann H, et al. Do basic laboratory tests or clinical observations predict bleeding in thrombocytopenic oncology patients? A reevaluation of prophylactic platelet transfusions. Transfus Med Rev. 2002;16(1):34–45.

    Article  PubMed  Google Scholar 

  82. Slichter SJ. Relationship between platelet count and bleeding risk in thrombocytopenic patients. Transfus Med Rev. 2004 Jul;18(3):153–67.

    Article  PubMed  Google Scholar 

  83. Elting L, Martin C, Cantor S, et al. A clinical prediction rule to guide the use of prophylactic platelet growth factors and platelet transfusions. Proc Am Soc Clin Oncol. 1998;421a:17.

    Google Scholar 

  84. MacManus M, Lamborn K, Khan W, et al. Radiotherapy-associated neutropenia and thrombocytopenia: analysis of risk factors and development of a predictive model. Blood. 1997;89:2303–10.

    Google Scholar 

  85. Elting L, Martin C, Kurtin D, et al. The bleeding risk index: a clinical prediction rule to guide the prophylactic use of platelet transfusions in patients with lymphoma or solid tumors. Cancer. 2002;94:3252–62.

    Article  PubMed  Google Scholar 

  86. Kaufman RM, Djulbegovic B, Gernsheimer T, et al. Platelet transfusion: a clinical practice guideline from the American Association of Blood Banks. Ann Intern Med. 2015;162(3):205–13.

    Article  PubMed  Google Scholar 

  87. Padhi S, Kemmis-Betty S, Rajesh S, et al. Blood transfusion: summary of NICE guidance. BMJ. 2015;351:h5832.

    Article  PubMed  Google Scholar 

  88. Lin Y, Foltz LM. Proposed guidelines for platelet transfusion. BCMJ. 2005;47(5):245–8.

    Google Scholar 

  89. Fillmore WJ, Leavitt BD, Arce K. Dental extraction in the thrombocytopenic patient is safe and complications are easily managed. J Oral Maxillofac Surg. 2013;71(10):1647–52.

    Article  PubMed  Google Scholar 

  90. Napolitano L. Perioperative anemia. Surg Clin North Am. 2005;85:1215–27.

    Article  PubMed  Google Scholar 

  91. Rodgers GM, Becker PS, Bennett CL, et al. Cancer and chemotherapy induced anemia. J Natl Compr Canc Netw. 2008;6:536.

    Article  PubMed  Google Scholar 

  92. Maccio A, Madeddu C, Gramignano G, et al. The role of inflammation, iron, and nutritional status in cancer-related anemia: results of a large, prospective, observational study. Haematologica. 2015;100:124.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

    Article  PubMed  Google Scholar 

  94. Engelfriet CP, Overbeeke MA, von dem Borne AE. Autoimmune hemolytic anemia. Semin Hematol. 1992;29:3.

    PubMed  Google Scholar 

  95. Neoh K, Stanworth S, Pasricha SR, et al. Estimating prevalence of functional iron deficiency anaemia in advanced cancer. Support Care Cancer. 2017;25(4):1209–14.

    Article  PubMed  Google Scholar 

  96. Gilreath JA, Stenehjem DD, Rodgers GM. Diagnosis and treatment of cancer related anemia. Am J Hematol. 2014;89:203–12.

    Article  PubMed  Google Scholar 

  97. Cascinu S, Fedeli A, Del Ferro E, et al. Recombinant human erythropoietin treatment in cisplatin associated anemia: a randomized, double blind trial with placebo. J Clin Oncol. 1994;12:1058.

    Article  PubMed  Google Scholar 

  98. Abels R. Erythropoietin for anemia in cancer patients. Eur J Cancer. 1993;29A(Suppl 2):S2.

    Article  PubMed  Google Scholar 

  99. Hébert PC, Wells G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med. 1999;340(6):409–17. Erratum in: N Engl J Med. 1999;340(13):1056.

    Google Scholar 

  100. Henderson JM, Bergman S, Salama A, et al. Management of the oral and maxillofacial surgery patient with thrombocytopenia. J Oral Maxillofac Surg. 2001;59(4):421–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kademani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idle, M., Claiborne, S., Patel, K., Kademani, D. (2018). Malignancy and Hemostasis. In: Szumita, R., Szumita, P. (eds) Hemostasis in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-71240-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71240-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71239-0

  • Online ISBN: 978-3-319-71240-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics