Skip to main content

Ensembles of Recurrent Neural Networks for Robust Time Series Forecasting

  • Conference paper
  • First Online:
Artificial Intelligence XXXIV (SGAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10630))

Abstract

Time series forecasting is a problem that is strongly dependent on the underlying process which generates the data sequence. Hence, finding good model fits often involves complex and time consuming tasks such as extensive data preprocessing, designing hybrid models, or heavy parameter optimization. Long Short-Term Memory (LSTM), a variant of recurrent neural networks (RNNs), provide state of the art forecasting performance without prior assumptions about the data distribution. LSTMs are, however, highly sensitive to the chosen network architecture and parameter selection, which makes it difficult to come up with a one-size-fits-all solution without sophisticated optimization and parameter tuning. To overcome these limitations, we propose an ensemble architecture that combines forecasts of a number of differently parameterized LSTMs to a robust final estimate which, on average, performs better than the majority of the individual LSTM base learners, and provides stable results across different datasets. The approach is easily parallelizable and we demonstrate its effectiveness on several real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/saschakrs/TSensemble, accessed July 7 2017.

  2. 2.

    Note that even if for smaller datasets, like the Sunspot dataset, the test set is fairly small, this shows that the results are still significant.

References

  1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  2. Tsukamoto, K., Mitsuishi, Y., and Sassano, M.: Learning with multiple stacking for named entity recognition. In: Proceedings of the 6th Conference on Natural Language Learning, vol. 20, pp. 1–4. Association for Computational Linguistics (2002)

    Google Scholar 

  3. Lai, K.K., Yu, L., Wang, S., Wei, H.: A novel nonlinear neural network ensemble model for financial time series forecasting. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 790–793. Springer, Heidelberg (2006). https://doi.org/10.1007/11758501_106

    Chapter  Google Scholar 

  4. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). Elsevier, Amsterdam

    Article  Google Scholar 

  5. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003). Elsevier, Amsterdam

    Article  MATH  Google Scholar 

  6. Adhikari, R., Agrawal, R.K.: A linear hybrid methodology for improving accuracy of time series forecasting. Neural Comput. Appl. 25(2), 269–281 (2014). Springer, London, UK

    Article  Google Scholar 

  7. Adhikari, R.: A neural network based linear ensemble framework for time series forecasting. Neurocomputing 157, 231–242 (2015). Elsevier, Amsterdam

    Article  Google Scholar 

  8. Armstrong, J.S.: Combining forecasts. In: Armstrong, J.S. (ed.) Principles of Forecasting. ISOR, pp. 417–439. Springer, Boston (2001). https://doi.org/10.1007/978-0-306-47630-3_19

    Chapter  Google Scholar 

  9. Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data. Appl. Soft Comput. 23, 27–38 (2014). Elsevier, Amsterdam

    Article  Google Scholar 

  10. Wang, L., Zou, H., Su, J., Li, L., Chaudhry, S.: An ARIMA-ANN hybrid model for time series forecasting. Syst. Res. Behav. Sci. 30(3), 244–259 (2013)

    Article  Google Scholar 

  11. Aladag, C.H., Egrioglu, E., Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology. Appl. Math. Lett. 22(9), 1467–1470 (2009)

    Article  MATH  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  13. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  14. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings of the 23rd European Symposium on Artificial Neural Networks. Computational Intelligence and Machine Learning, pp. 89–94. Presses universitaires de Louvain (2015)

    Google Scholar 

  15. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, vol. 28, pp. 1310–1318 (2013)

    Google Scholar 

  16. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  17. Assaad, M., Boné, R., Cardot, H.: A new boosting algorithm for improved time-series forecasting with recurrent neural networks. Inf. Fusion 9(1), 41–55 (2008)

    Article  Google Scholar 

  18. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, vol. 38. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  19. Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  20. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: with R Examples. Springer Science & Business Media, Heidelberg (2010)

    MATH  Google Scholar 

  21. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  22. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  24. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml

  25. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale Internet traffic forecasting using neural networks and time series methods. Expert Syst. 29(2), 143–155 (2012)

    Google Scholar 

  26. Hipel, K.W., McLeod, A.I.: Time Series Modelling of Water Resources and Environmental Systems, vol. 45. Elsevier, Amsterdam (1994)

    Book  Google Scholar 

  27. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sascha Krstanovic or Heiko Paulheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krstanovic, S., Paulheim, H. (2017). Ensembles of Recurrent Neural Networks for Robust Time Series Forecasting. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXIV. SGAI 2017. Lecture Notes in Computer Science(), vol 10630. Springer, Cham. https://doi.org/10.1007/978-3-319-71078-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71078-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71077-8

  • Online ISBN: 978-3-319-71078-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics