Skip to main content

An SVD in Spherical Surface Wave Tomography

  • Chapter
  • First Online:
New Trends in Parameter Identification for Mathematical Models

Part of the book series: Trends in Mathematics ((TM))

Abstract

In spherical surface wave tomography, one measures the integrals of a function defined on the sphere along great circle arcs. This forms a generalization of the Funk–Radon transform, which assigns to a function its integrals along full great circles. We show a singular value decomposition (SVD) for the surface wave tomography provided we have full data.

Since the inversion problem is overdetermined, we consider some special cases in which we only know the integrals along certain arcs. For the case of great circle arcs with fixed opening angle, we also obtain an SVD that implies the injectivity, generalizing a previous result for half circles in Groemer (Monatsh Math 126(2):117–124, 1998). Furthermore, we derive a numerical algorithm based on the SVD and illustrate its merchantability by numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Abouelaz, R. Daher, Sur la transformation de Radon de la sphère S d. Bull. Soc. Math. France 121(3), 353–382 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Amirbekyan, The application of reproducing kernel based spline approximation to seismic surface and body wave tomography: theoretical aspects and numerical results. Dissertation, Technische Universität Kaiserslautern, 2007

    Google Scholar 

  3. A. Amirbekyan, V. Michel, F.J. Simons, Parametrizing surface wave tomographic models with harmonic spherical splines. Geophys. J. Int. 174(2), 617–628 (2008)

    Article  Google Scholar 

  4. F.L. Bauer, Remarks on Stirling’s formula and on approximations for the double factorial. Math. Intell. 29(2), 10–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Daher, Un théorème de support pour une transformation de Radon sur la sphère S d. C. R. Acad. Sci. Paris 332(9), 795–798 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Dahlen, J. Tromp, Theoretical Global Seismology (Princeton University Press, Princeton, 1998)

    Google Scholar 

  7. F. Dai, Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics (Springer, New York, 2013)

    Google Scholar 

  8. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375 (Kluwer Academic, Dordrecht, 1996)

    Google Scholar 

  9. D. Fournier, L. Gizon, M. Holzke, T. Hohage, Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows. Inverse Probl. 32(10), 105002 (2016)

    Google Scholar 

  10. W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  11. P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann. 74(2), 278–300 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Gindikin, J. Reeds, L. Shepp, Spherical tomography and spherical integral geometry, in Tomography, Impedance Imaging, and Integral Geometry, ed. by E.T. Quinto, M. Cheney, P. Kuchment. Lectures in Applied Mathematics, vol. 30 (American Mathematical Society, South Hadley, MA, 1994), pp. 83–92

    Google Scholar 

  13. P. Goodey, W. Weil, Average section functions for star-shaped sets. Adv. Appl. Math. 36(1), 70–84 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Academic, New York, 2007)

    MATH  Google Scholar 

  15. M. Gräf, Quadrature rules on manifolds, 2016, http://www.tu-chemnitz.de/~potts/workgroup/graef/quadrature

    Google Scholar 

  16. M. Gräf, Efficient algorithms for the computation of optimal quadrature points on Riemannian manifolds. Dissertation, Universitätsverlag Chemnitz, 2013

    Google Scholar 

  17. M. Gräf, D. Potts, Sampling sets and quadrature formulae on the rotation group. Numer. Funct. Anal. Optim. 30, 665–688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Groemer, On a spherical integral transformation and sections of star bodies. Monatsh. Math. 126(2), 117–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.M. Healy Jr., H. Hendriks, P.T. Kim, Spherical deconvolution. J. Multivariate Anal. 67, 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Helgason, Integral Geometry and Radon Transforms (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  21. R. Hielscher, The Radon transform on the rotation group–inversion and application to texture analysis. Dissertation, Technische Universität Bergakademie Freiberg, 2007

    Google Scholar 

  22. R. Hielscher, M. Quellmalz, Optimal mollifiers for spherical deconvolution. Inverse Probl. 31(8), 085001 (2015)

    Google Scholar 

  23. R. Hielscher, M. Quellmalz, Reconstructing a function on the sphere from its means along vertical slices. Inverse Probl. Imaging 10(3), 711–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Keiner, D. Potts, Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77, 397–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Keiner, S. Kunis, D. Potts, NFFT 3.4, C subroutine library, 2017, http://www.tu-chemnitz.de/~potts/nfft

  26. J. Keiner, S. Kunis, D. Potts, Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. A.K. Louis, P. Maass, A mollifier method for linear operator equations of the first kind. Inverse Probl. 6(3), 427–440 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Michel, Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball (Birkhäuser, New York, 2013)

    Book  MATH  Google Scholar 

  29. G. Nolet, A Breviary of Seismic Tomography (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  30. V.P. Palamodov, Reconstruction from Integral Data. Monographs and Research Notes in Mathematics (CRC Press, Boca Raton, 2016)

    Google Scholar 

  31. V.P. Palamodov, Reconstruction from cone integral transforms. Inverse Probl. 33(10), 104001 (2017)

    Google Scholar 

  32. D. Potts, J. Prestin, A. Vollrath, A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numer. Algorithms 52, 355–384 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Quellmalz, A generalization of the Funk–Radon transform. Inverse Probl. 33(3), 035016 (2017)

    Google Scholar 

  34. B. Rubin, Generalized Minkowski–Funk transforms and small denominators on the sphere. Fract. Calc. Appl. Anal. 3(2), 177–203 (2000)

    MathSciNet  MATH  Google Scholar 

  35. B. Rubin, Radon transforms and Gegenbauer–Chebyshev integrals, II; examples. Anal. Math. Phys. 7(4), 349–375 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Rubin, On the determination of star bodies from their half-sections. Mathematika 63(2), 462–468 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Salman, An inversion formula for the spherical transform in S 2 for a special family of circles of integration. Anal. Math. Phys. 6(1), 43–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Schneider, Functions on a sphere with vanishing integrals over certain subspheres. J. Math. Anal. Appl. 26, 381–384 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  39. R.S. Strichartz, L p estimates for Radon transforms in Euclidean and non–Euclidean spaces. Duke Math. J. 48(4), 699–727 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Trampert, J.H. Woodhouse, Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds. Geophys. J. Int. 122(2), 675–690 (1995)

    Article  Google Scholar 

  41. D. Varshalovich, A. Moskalev, V. Khersonskii, Quantum Theory of Angular Momentum (World Scientific Publishing, Singapore, 1988)

    Book  Google Scholar 

  42. E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Die Wissenschaft, vol. 85 (Friedr. Vieweg & Sohn, Braunschweig, 1931)

    Google Scholar 

  43. J.H. Woodhouse, A.M. Dziewonski, Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res. Solid Earth 89(B7), 5953–5986 (1984)

    Article  Google Scholar 

  44. G. Zangerl, O. Scherzer, Exact reconstruction in photoacoustic tomography with circular integrating detectors II: spherical geometry. Math. Methods Appl. Sci. 33(15), 1771–1782 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Volker Michel for pointing out the problem of spherical surface wave tomography at the Mecklenburg Workshop on Approximation Methods and Data Analysis 2016 and for fruitful conversations later on. Furthermore, we thank the anonymous reviewer for providing helpful comments and suggestions to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Quellmalz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hielscher, R., Potts, D., Quellmalz, M. (2018). An SVD in Spherical Surface Wave Tomography. In: Hofmann, B., Leitão, A., Zubelli, J. (eds) New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70824-9_7

Download citation

Publish with us

Policies and ethics