Skip to main content

Light Scattering by Large Bubbles

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

This review highlights the various electromagnetic methods, geometrical and physical optics approximations developed so far in the literature to predict the light scattering properties of large bubbles in an optically dilute regime. The underlying problematic is essentially linked to the characterization of bubbly flows or, more generally, multiphase flows, where most optical diagnostics are based on the analysis of the scattering diagrams, caustics and singularities with interferometric or diffractometric techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover Inc, New York

    Google Scholar 

  • Adam JA (2002) The mathematical physics of rainbows and glories. Phys Rep 356(4–5):229–365

    Article  ADS  MATH  Google Scholar 

  • Aiello A, Woerdman J (2008) Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Opt Lett 33(13):1437–1439

    Article  ADS  Google Scholar 

  • Arnott WP, Marston PL (1988) Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns. J Opt Soc Am A 5(4):496–506

    Article  ADS  Google Scholar 

  • Artmann K (1948) Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann Phys 437(1–2):87–102

    Article  MATH  Google Scholar 

  • Asano S, Yamamoto G (1975) Light scattering by a spheroidal particle. Appl Opt 14(1):29–49

    Article  ADS  Google Scholar 

  • Barber SC, Hill PW (1990) Light scattering by particles: computational methods. World Scientific, Singapore

    Google Scholar 

  • Barton JP (1997) Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. I. Internal and near-field effects. Appl Opt 36(6):1303–1311

    Article  ADS  Google Scholar 

  • Berman P (2012) Goos-Hänchen effect. Scholarpedia 7(3):11584

    Article  ADS  Google Scholar 

  • Bhandari R (1985) Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl Opt 24(13):1960–1967

    Article  ADS  Google Scholar 

  • Bohren CF, Clothiaux EE (2008) Fundamentals of atmospheric radiation: an introduction with 400 problems. Wiley VCH, Weinheim

    Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Borghese F, Denti P, Saija R (1994) Optical properties of spheres containing several spherical inclusions. Appl Opt 33(3):484–493

    Article  ADS  Google Scholar 

  • Bosbach J, KĂĽhn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46(3):539–547

    Article  Google Scholar 

  • Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Bunkin NF, Suyazov NV, Shkirin AV, Ignatiev PS, Indukaev KV (2009) Nanoscale structure of dissolved air bubbles in water as studied by measuring the elements of the scattering matrix. J Chem Phys 130(13):134308

    Article  ADS  Google Scholar 

  • Bunner B, Tryggvason G (1999) Direct numerical simulations of three-dimensional bubbly flows. Phys Fluids 11:1967–1969

    Article  ADS  MATH  Google Scholar 

  • Celata GP, D’Annibale F, Di Marco P, Memoli G, Tomiyama A (2007) Measurements of rising velocity of a small bubble in a stagnant fluid in one- and two-component systems. Exp Thermal Fluid Sci 31(6):609–623

    Article  Google Scholar 

  • Chang SC, Jin JM, Jin J, Zhang S (1996) Computations of special functions. Wiley, New York

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles drops and particles. Academic Press, New York

    Google Scholar 

  • Cooke DD, Kerker M (1969) Light scattering from long thin glass cylinders at oblique incidence. J Opt Soc Am A 59(1):43–48

    Article  Google Scholar 

  • Cooray MFR, Ciric IR (1993) Wave scattering by a chiral spheroid. J Opt Soc Am A 10(6):1197–1203

    Article  ADS  Google Scholar 

  • Dave JV (1969) Scattering of visible light by large water spheres. Appl Opt 8(1):155–164

    Article  ADS  Google Scholar 

  • Davis GE (1955) Scattering of light by an air bubble in water. J Opt Soc Am A 45(7):572–581

    Article  Google Scholar 

  • Debye P (1909) Der lichtdruck auf kugeln von beliebigem material. Ann Phys 30:57–136

    Article  MATH  Google Scholar 

  • Dehaeck S, van Beeck JPAJ, Riethmuller ML (2005) Extended glare point velocimetry and sizing for bubbly flows. Exp Fluids 39(2):407–419

    Article  Google Scholar 

  • Deschamps GA (1972) Ray techniques in electromagnetics. Proc IEEE 60:1022–1035

    Article  Google Scholar 

  • Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499

    Article  ADS  Google Scholar 

  • Eremina E, Wriedt T, Eremin Y (2006) Discrete sources method for analysis of a light scattering by an air bubble on resist for immersion lithography. J Quant Spectrosc Radiat Transf 100:131–136

    Article  ADS  Google Scholar 

  • Farafonov VG, Voshchinnikov NV, Somsikov VV (1996) Light scattering by a core–mantle spheroidal particle. Appl Opt 35(27):5412–5426

    Article  ADS  Google Scholar 

  • Felsen LB (1984) Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams. Geophys J Int 79(1):77–88

    Article  ADS  Google Scholar 

  • Fiedler-Ferrari N (1983) Espalhamento de Mie na Vizinhanca do angulo critico. PhD thesis, University of SĂŁo Paulo

    Google Scholar 

  • Fiedler-Ferrari N, Nussenzveig HM, Wiscombe WJ (1991) Theory of near-critical-angle scattering from a curved interface. Phys Rev A 43(2):1005–1038

    Article  ADS  Google Scholar 

  • Fowles GR (1987) Introduction to modern optics. Dover books on physics. Dover Publications, New York

    Google Scholar 

  • Goodman JW (1960) Introduction to fourier optic. McGraw-Hill, New York

    Google Scholar 

  • Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 436(7–8):333–346

    Article  Google Scholar 

  • Gordon HR, Boynton GC (1998) Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies. Appl Opt 37(18):3886–3896

    Article  ADS  Google Scholar 

  • Gouesbet G, GrĂ©han G (2011) Generalized Lorenz-Mie theories. Springer, Berlin

    Google Scholar 

  • Gouesbet G, Lock JA (1994) Rigourous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz-Mie theory. Part 1: Off-axis beams. J Opt Soc Am A 11(9):2503–2515

    Article  ADS  Google Scholar 

  • Gouesbet G, Maheu B, GrĂ©han G (1988) Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A 5(9):1427–1443

    Article  ADS  MathSciNet  Google Scholar 

  • Grace JR (1973) Shapes and velocities of bubbles rising in infinite liquids. T I Chem Eng Lond 51:116–120

    Google Scholar 

  • GrĂ©han G, Onofri F, Girasole T, Gouesbet G, Durst G, Tropea C (1996) Measurement of bubbles by phase doppler technique and trajectory ambiguity. In: Adrian RJ, DurĂŁo DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Developments in laser techniques and applications to fluid mechanics: Proceedings of the 7th international symposium Lisbon, Portugal, 11–14 July 1994, pp 290–302. Springer

    Google Scholar 

  • He H, Li W, Zhang X, Xia M, Yang K (2012) Light scattering by a spheroidal bubble with geometrical optics approximation. J Quant Spectrosc Radiat Transf 113(12):1467–1475

    Article  ADS  Google Scholar 

  • Hergert W, Wriedt T (2012) The Mie theory: basics and applications. Springer series in optical sciences. Springer-Verlag

    Google Scholar 

  • Hovenac EA (1991) Calculation of far-field scattering from nonspherical particles using a geometrical optics approach. Appl Opt 30(33):4739–4746

    Article  ADS  Google Scholar 

  • Hovenac EA, Lock JA (1992) Assessing the contribution of surface waves and complex rays to far-field scattering by use of the Debye series. J Opt Soc Am A 9(5):781–795

    Article  ADS  Google Scholar 

  • Jiang K, Han X, Ren KF (2013) Scattering of a Gaussian beam by an elliptical cylinder using the vectorial complex ray model. J Opt Soc Am A 30(8):1548–1556

    Google Scholar 

  • Johnson BD, Cooke RC (1981) Generation of stabilized microbubbles in seawater. Science 213(4504):209–211

    Article  ADS  Google Scholar 

  • Jonasz M, Fournier G (2007a) Light scattering by particles in water: theoretical and experimental foundations. Academic Press, New York

    Google Scholar 

  • Jonasz M, Fournier GR (2007b) Chapter 2—Optical properties of pure water, seawater, and natural waters. In: Light Scattering by Particles in Water. Academic Press, Amsterdam, pp 33–85

    Google Scholar 

  • Jonasz M, Fournier GR (2007c) Chapter 4—Measurements of light scattering by particles in water. In: Light scattering by particles in water. Academic Press, New York, pp 145–265

    Google Scholar 

  • Jörg BG, Susumu S, Martina H (2013) Are Fresnel filtering and the angular Goos-Hänchen shift the same? J Opt 15(1):014009

    Article  Google Scholar 

  • Keller JB (1962) Geometrical theory of diffraction. J Opt Soc Am A 52(2):116–130

    Article  MathSciNet  Google Scholar 

  • Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New York

    Google Scholar 

  • Kingsbury DL, Marston PL (1981) Mie scattering near the critical angle of bubbles in water. J Opt Soc Am A 71(3):358–361

    Article  ADS  Google Scholar 

  • Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W (2005) Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46(11):3540–3563

    Article  Google Scholar 

  • Kokhanovsky A (2006) Cloud optics. Kokhanovsky, Alexander Springer

    Google Scholar 

  • Krzysiek M (2009) Particle systems characterization by inversion of critical light scattering patterns. PhD thesis, Aix-Marseille University

    Google Scholar 

  • Lamadie F, Bruel L, Himbert M (2012) Digital holographic measurement of liquid–liquid two-phase flows. Opt Lasers Eng 50(12):1716–1725

    Article  Google Scholar 

  • Langley DS, Marston PL (1984) Critical-angle scattering of laser light from bubbles in water: measurements, models, and application to sizing of bubbles. Appl Opt 23(7):1044–1054

    Article  ADS  Google Scholar 

  • Latham L (2017) Where to find bubbles in nature. Available online at url-http://frogmom.com/bubbles-in-nature/

  • Lin CH, Wang LA (2005) Simulation of air bubble scattering effects in 193 nm immersion interferometric lithography. J Vac Sci Technol B 23(6):2684–2693

    Article  Google Scholar 

  • Liping S, Deming R, Yanchen Q, Weijiang Z, Xiaoyong H (2006) Study on dirty bubbles of volumetric scattering function in ship wakes. In: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, Long Beach, California, 2006/05/21 2006. Technical Digest (CD), p CFD6. Optical Society of America

    Google Scholar 

  • Lock JA (1996a) Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection. Appl Opt 35(3):500–514

    Article  ADS  Google Scholar 

  • Lock JA (1996b) Ray scattering by an arbitrarily oriented spheroid. II. Transmission and cross-polarization effects. Appl Opt 35(3):515–531

    Article  ADS  Google Scholar 

  • Lock JA (2003) Role of the tunneling ray in near-critical-angle scattering by a dielectric sphere. J Opt Soc Am A 20:499–507

    Article  ADS  Google Scholar 

  • Lock JA (2008) Scattering of an electromagnetic plane wave by a Luneburg lens. III. Finely stratified sphere model. J Opt Soc Am A 25(12):2991–3000

    Article  ADS  MathSciNet  Google Scholar 

  • Lock JA, Adler CL (1997) Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder. J Opt Soc Am A 14(6):1316–1328

    Article  ADS  Google Scholar 

  • Lotsch HKV (1968) Reflection and refraction of a beam of light at a plane interface. J Opt Soc Am A 58(4):551–561

    Article  Google Scholar 

  • Lotsch HKV (1971) Beam displacement at total reflection: the Goos-Hänchen effect. Optick 32:553–569

    Google Scholar 

  • Macke A, Mishchenko MI (1996) Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. Appl Opt 35(21):4291–4296

    Article  ADS  Google Scholar 

  • Marston PL (1979) Critical angle scattering by a bubble: physical-optics approximation and observations. J Opt Soc Am A 69(9):1205–1211

    Article  ADS  Google Scholar 

  • Marston PL (1992) 1 - Geometrical and catastrophe optics methods in scattering. In: Pierce AD, Thurston RN (eds) Physical acoustics, vol 21. Academic Press, Boston, pp 1–234

    Google Scholar 

  • Marston PL (1999) light scattering by bubbles in liquids and applications to physical acoustics. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and Sonoluminescence. Springer, pp. 73–86

    Google Scholar 

  • Marston PL (2015) Surprises and anomalies in acoustical and optical scattering and radiation forces. J Quant Spectrosc Radiat Transf 162:8–17

    Article  ADS  Google Scholar 

  • Marston PL, Kingsbury DL (1981) Scattering by a bubble in water near the critical angle: interference effects. J Opt Soc Am A 71(2):192–196

    Article  ADS  Google Scholar 

  • Marston PL, Langley DS, Kingsbury DL (1982) Light scattering by bubbles in liquids: Mie theory, physical-optics approximations, and experiments. Appl Sci Res 38(1):373–383

    Article  Google Scholar 

  • Mees L, GrĂ©han G, Gouesbet G (2001) Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses. Opt Commun 194(1–3):59–65

    Article  ADS  Google Scholar 

  • Merano M, Aiello A, t’Hooft G, Van Exter M, Eliel E, Woerdman J (2007) Observation of Goos-Hänchen shifts in metallic reflection. Opt Express 15(24):15928–15934

    Google Scholar 

  • Mie G (1908) Beiträge zur Optik TrĂĽber Medien Speziell Kolloidaler Metallösungen. Ann Phys 330(3):377–445

    Article  MATH  Google Scholar 

  • Minnaert M (1980) The nature of light & colour in the open air. Dover Publications, New York

    Google Scholar 

  • Mishchenko MI, Travis LD (1998) Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J Quant Spectrosc Radiat Transf 60(3):309

    Article  ADS  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitri FG (2011) Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere. Opt Lett 36(5):766–768

    Article  ADS  MathSciNet  Google Scholar 

  • Muinonen K, Nousiainen T, Fast P, Lumme K, Peltoniemi JI (1996) Light scattering by Gaussian random particles: ray optics approximation. J Quant Spectrosc Radiat Transf 55(5):577–601

    Article  ADS  Google Scholar 

  • Nussenzveig HM (1992) Diffraction effects in semiclassical scattering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nye JF (1999) Natural focusing and fine structure of light: caustics and wave dislocations. IOP Publishing Ltd, Bristol

    MATH  Google Scholar 

  • Onofri F (1999) Critical angle refractometry for simultaneous measurement of particles in flow: size and relative refractive index. Part Part Syst Char 16(3):119–127

    Article  Google Scholar 

  • Onofri F, GrĂ©han G, Gouesbet G (1995) Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl Opt 34(30):7113–7124

    Article  ADS  Google Scholar 

  • Onofri F, Blondel D, GrĂ©han G, Gouesbet G (1996) On the optical diagnosis and sizing of spherical coated and multilayered particles with phase-doppler anemometry. Part Part Syst Char 13(2):104–111

    Article  Google Scholar 

  • Onofri F, Lenoble A, Bultynck H, GuĂ©ring P-H (2004) High-resolution laser diffractometry for the on-line sizing of small transparent fibres. Opt Commun 234(1–6):183–191

    Article  ADS  Google Scholar 

  • Onofri F, Krysiek M, Mroczka J (2007a) Critical angle refractometry and sizing of bubble clouds. Opt Lett 32(14):2070–2072

    Article  ADS  Google Scholar 

  • Onofri F, Lenoble A, Radev S, Guering P-H (2007b) High resolution monitoring of an unsteady glass fibre drawing process. Exp Fluids 42(4):601–610

    Article  Google Scholar 

  • Onofri FA, Krzysiek M, Mroczka J, Ren K-F, Radev S, Bonnet J-P (2009) Optical characterization of bubbly flows with a near-critical-angle scattering technique. Exp Fluids 47(4–5):721–732

    Article  Google Scholar 

  • Onofri FRA, Krzysiek MA, Barbosa S, Messager V, Ren K-F, Mroczka J (2011) Near-critical-angle scattering for the characterization of clouds of bubbles: particular effects. Appl Opt 50(30):5759–5769

    Article  ADS  Google Scholar 

  • Onofri FRA, Radev S, Sentis M, Barbosa S (2012) Physical-optics approximation of near-critical-angle scattering by spheroidal bubbles. Opt Lett 37(22):4780–4782

    Article  ADS  Google Scholar 

  • Onofri FRA, Ren KF, Sentis M, Gaubert Q, PelcĂ© C (2015) Experimental validation of the vectorial complex ray model on the inter-caustics scattering of oblate droplets. Opt Express 23(12):15768–15773

    Article  ADS  Google Scholar 

  • Prosperetti A, Tryggvason G (2007) Computational methods for multiphase flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Puri A, Birman JL (1986) Goos-Hänchen beam shift at total internal reflection with application to spatially dispersive media. J Opt Soc Am A 3(4):543–549

    Article  ADS  Google Scholar 

  • Reinhard L, Martin B, Rumiana D, Thomas F, Jan K, Xinzhao Z (2005) Droplets, bubbles, and vesicles at chemically structured surfaces. J Phys Condens Mat 17(9):S537

    Article  Google Scholar 

  • Ren KF, GrĂ©han G, Gouesbet G (1997) Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results. J Opt Soc Am A 14(11):3014–3025

    Article  ADS  MathSciNet  Google Scholar 

  • Ren KF, Onofri F, RozĂ© C, Girasole T (2011) Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle. Opt Lett 36(3):370–372

    Article  ADS  Google Scholar 

  • Renard RH (1964) Total reflection: a new evaluation of the Goos-Hänchen shift. J Opt Soc Am A 54(10):1190–1196

    Article  Google Scholar 

  • Salkin L, Schmit A, Panizza P, Courbin L (2016) Generating soap bubbles by blowing on soap films. Phys Rev Lett 116(7):077801

    Article  ADS  Google Scholar 

  • Sentis M, Onofri FRA, Dhez O, Laurent J-Y, Chauchard F (2015) Organic photo sensors for multi-angle light scattering characterization of particle systems. Opt Express 23(21):27536–27541

    Article  ADS  Google Scholar 

  • Sentis MPL, Onofri FRA, Méès L, Radev S (2016) Scattering of light by large bubbles: coupling of geometrical and physical optics approximations. J Quant Spectrosc Radiat Transf 170:8–18

    Article  ADS  Google Scholar 

  • Sentis MPL, Bruel L, Charton S, Onofri FRA, Lamadie F (2017) Digital in-line holography for the characterization of flowing particles in astigmatic optical systems. Opt Lasers Eng 88:184–196

    Article  Google Scholar 

  • Sharma SK, Somerford DJ (2006) Light scattering by optically soft particles: theory and applications. Praxis Publishing Ltd, Chichester

    Google Scholar 

  • Shelby JE (2005) Introduction to glass science and technology. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Liquid–liquid extraction in flow analysis: a critical review. Anal Chim Acta 652(1–2):54–65

    Article  Google Scholar 

  • Stavroudis ON (2006) The mathematics of geometrical and physical optics. Wiler-VCH Verlag & Co. KGaA, weinheim

    Book  MATH  Google Scholar 

  • Stockschläder P, Kreismann J, Hentschel M (2014) Curvature dependence of semiclassical corrections to ray optics: how Goos-Hänchen shift and Fresnel filtering deviate from the planar case result. Europhys Lett 107(6):64001

    Article  ADS  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Tadros TF (2013) Emulsion formation, stability, and rheology. In: Emulsion formation and stability. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–75

    Google Scholar 

  • Tatsuya K, Yukihiro A, Masanobu M (2002) Size measurements of droplets and bubbles by advanced interferometric laser imaging technique. Meas Sci Technol 13(3):308

    Article  Google Scholar 

  • Tian L, Loomis N, DomĂ­nguez-Caballero JA, Barbastathis G (2010) Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography. Appl Opt 49(9):1549–1554

    Article  ADS  Google Scholar 

  • Tran NH, Dutriaux L, Balcou P, Le Floch A, Bretenaker F (1995) Angular Goos-Hänchen effect in curved dielectric microstructures. Opt Lett 20(11):1233–1235

    Article  ADS  Google Scholar 

  • Trefil JS (1984) A scientist at the seashore. Scribner, New York

    Google Scholar 

  • Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Makino Y, Kawagoe Y, Shiina T, Oshita S (2010) Evidence of the existence and the stability of nano-bubbles in water. ‎Colloids Surf A 361(1–3):31–37

    Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Dover Publications, New York

    Google Scholar 

  • van Sint Annaland M, Deen NG, Kuipers JAM (2005) Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem Eng Sci 60(11):2999–3011

    Article  Google Scholar 

  • Vera MU, Saint-Jalmes A, Durian DJ (2001) Scattering optics of foam. Appl Opt 40(24):4210–4214

    Article  ADS  Google Scholar 

  • Vetrano MR, van Beeck JPAJ, Riethmuller ML (2004) Global rainbow thermometry: improvements in the data inversion algorithm and validation technique in liquid-liquid suspension. Appl Opt 43(18):3600–3607

    Article  ADS  Google Scholar 

  • Wiscombe WJ (1980) Improved Mie scattering algorithms. Appl Opt 19(9):1505–1509

    Article  ADS  Google Scholar 

  • Woolf DK (2001) Bubbles A2. In: Steele JH (ed) Encyclopedia of ocean sciences. Academic Press, London, pp 352–357

    Chapter  Google Scholar 

  • Woolf LD (2010) Multiple smatterings of insight: 10 years of interaction with Craig Bohren. NANOP 4(1), 041595–041597

    Google Scholar 

  • Wriedt T (2007) Review of the null-field method with discrete sources. J Quant Spectrosc Radiat Transfer 106:535

    Article  ADS  Google Scholar 

  • Wriedt T (2017) Light Scattering programs (ScattPort). Available online at url-http://www.scattport.org/index.php/light-scattering-software

  • Wu ZS, Wang YP (1991) Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci 26(6):1393–1401

    Article  ADS  Google Scholar 

  • Wu L, Yang H, Li X, Yang B, Li G (2007) Scattering by large bubbles: comparisons between geometrical-optics theory and Debye series. J Quant Spectrosc Radiat Transf 108(1):54–64

    Article  ADS  Google Scholar 

  • Xu R (2001) Particle characterization: light scattering methods. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Xu F, Ren KF, Cai X (2006a) Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle. Appl Opt 45(20):4990–4999

    Article  ADS  Google Scholar 

  • Xu F, Ren KF, Cai X, Shen J (2006b) Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence. Appl Opt 45(20):5000–5009

    Article  ADS  Google Scholar 

  • Xu F, Lock JA, Tropea C (2010) Debye series for light scattering by a spheroid. J Opt Soc Am A 27(4):671–686

    Article  ADS  Google Scholar 

  • Yan B, Chen B, Stamnes K (2002) Role of oceanic air bubbles in atmospheric correction of ocean color imagery. Appl Opt 41(12):2202–2212

    Article  ADS  Google Scholar 

  • Yang P, Liou KN (2009) An “exact” geometric-optics approach for computing the optical properties of large absorbing particles. J Quant Spectrosc Radiat Transf 110(13):1162–1177

    Article  ADS  Google Scholar 

  • Yang M, Wu Y, Sheng X, Ren K-F (2015) Comparison of scattering diagrams of large non-spherical particles calculated by VCRM and MLFMA. J Quant Spectrosc Radiat Transf 163:143–153

    Google Scholar 

  • Yu H, Shen J, Wei Y (2008) Geometrical optics approximation of light scattering by large air bubbles. Particuology 6(5):340–346

    Article  Google Scholar 

  • Yu H, Xu F, Tropea C (2013) Simulation of optical caustics associated with the secondary rainbow of oblate droplets. Opt Lett 38(21):4469–4472

    Article  ADS  Google Scholar 

  • Yuan Y, Ren K, RozĂ© C (2016) Fraunhofer diffraction of irregular apertures by Heisenberg uncertainty Monte Carlo model. Particuology 24:151–158

    Article  Google Scholar 

  • Yurkin MA, Kahnert M (2013) Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method. J Quant Spectrosc Radiat Transf 123:176–183

    Article  ADS  Google Scholar 

  • Zhang X, Lewis M, Johnson B (1998) Influence of bubbles on scattering of light in the ocean. Appl Opt 37(27):6525–6536

    Article  ADS  Google Scholar 

  • Zhang S, Wang KW, He F, Zhou B (2015) Simulation and analysis of light scattering by air bubble in optical glass. Adv Mat Res 1096:98–102

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge Prof. K-F. Ren for providing them calculations with VCRM. This work was partially funded by the French National Research Agency (ANR) under grants AMO-COPS (ANR-13-BS09-0008-02), Labex MEC (ANR-11-LABX-0092), and A*MIDEX (ANR-11-IDEX-0001-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice R. A. Onofri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onofri, F.R.A., Sentis, M.P.L. (2018). Light Scattering by Large Bubbles. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-319-70808-9_3

Download citation

Publish with us

Policies and ethics