Skip to main content

Thermal Properties of Carbon Nanotube

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

There has been an unexpected rise in energy demand along with the rapid technological advancements all around the world, leading to increasing nonrenewable energy consumption and environmental damages. As a result, researchers have been looking for new ways to get energy from renewable sources like wind or solar while minimizing energy losses. A parallel attempt has been the development of strategies for increasing the overall thermal performance of devices utilizing materials with superior thermal properties. This led scientists to explore novel materials with enhanced properties to minimize energy losses and consumption. In this regard, carbon nanotubes have gained much interest since their discovery nearly two decades ago and are reported to be promising candidates for a wide range of applications considering their exceptional mechanical, thermal, and electrical properties. Due to the extraordinary thermal properties of CNTs, several research studies have been conducted to explore more about these unique materials and examine their possible application in heat transfer-related systems. The thermal properties of carbon nanotubes can be explored by the measurement of specific heat capacity, thermal diffusivity, and thermal conductivity, which will be discussed in the present chapter. The developed experimental methods for conducting the measurements are also reviewed, and the effects of several parameters on the thermal characteristics of nanotubes are explained according to the previous studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ajayan PM, Ravikumar V, Charlier JC (1998) Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys Rev Lett 81(7):1437

    Article  CAS  Google Scholar 

  • Akoshima M, Hata K, Futaba DN, Mizuno K, Baba T, Yumura M (2009) Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method. Jpn J Appl Phys 48(5S2):05EC07

    Google Scholar 

  • Alaghemandi M, Algaer E, Böhm MC, Müller-Plathe F (2009) The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology 20(11):115704

    Article  Google Scholar 

  • Aliev AE, Guthy C, Zhang M, Fang S, Zakhidov AA, Fischer JE, Baughman RH (2007) Thermal transport in MWCNT sheets and yarns. Carbon 45(15):2880–2888

    Article  CAS  Google Scholar 

  • Aliev AE, Lima MH, Silverman EM, Baughman RH (2009) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21(3):035709

    Article  Google Scholar 

  • Ando T (2003) Quantum anomalies in carbon nanotubes. Solid State Commun 127(2):69–78

    Article  CAS  Google Scholar 

  • Ando T (2004) Carbon nanotubes and exotic transport properties. Physica E 22(1–3):656–661

    Article  CAS  Google Scholar 

  • Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York/London

    Google Scholar 

  • Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    Article  CAS  Google Scholar 

  • Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613

    Article  CAS  Google Scholar 

  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  • Blumm J, Lindemann A, Min S (2007) Thermal characterization of liquids and pastes using the flash technique. Thermochim Acta 455(1–2):26–29

    Article  CAS  Google Scholar 

  • Boroushak SH, Ajori S, Ansari R (2021) Thermal conductivity of perfect and defective carbon nanotubes functionalized with carbene: a molecular dynamics study. Mol Simul 47:1–9

    Google Scholar 

  • Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    Article  CAS  Google Scholar 

  • Cao JX, Yan XH, Xiao Y, Ding JW (2004) Thermal conductivity of zigzag single-walled carbon nanotubes: role of the Umklapp process. Phys Rev B 69(7):073407

    Article  Google Scholar 

  • Chang C-W, Okawa D, Garcia H, Majumdar A, Zettl A (2008) Breakdown of Fourier’s law in nanotube thermal conductors. Phys Rev Lett 101(7):075903

    Article  CAS  Google Scholar 

  • Che J, Cagin T, Goddard Iii WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11(2):65

    Article  CAS  Google Scholar 

  • Chiu HY, Deshpande VV, Postma HWC, Lau CN, Miko C, Forro L, Bockrath M (2005) Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys Rev Lett 95(22):226101

    Article  Google Scholar 

  • Choi TY, Poulikakos D, Tharian J, Sennhauser U (2005) Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Appl Phys Lett 87(1):013108

    Article  Google Scholar 

  • Choi T-Y, Poulikakos D, Tharian J, Sennhauser U (2006) Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Lett 6(8):1589–1593

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  • Cummings A, Osman M, Srivastava D, Menon M (2004) Thermal conductivity of Y-junction carbon nanotubes. Phys Rev B 70(11):115405

    Article  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  • Dimitrakopulos GP, Dravid VP, Karakostas T, Pond RC (1997) The defect character of carbon nanotubes and nanoparticles. Acta Crystallogr A: Found Crystallogr 53(3):341–351

    Article  Google Scholar 

  • Din X-D, Michaelides EE (1997) Kinetic theory and molecular dynamics simulations of microscopic flows. Phys Fluids 9(12):3915–3925

    Article  CAS  Google Scholar 

  • Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99(25):255502

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40(12):2043–2061

    Article  CAS  Google Scholar 

  • Duzynska A, Judek J, Zdrojek M (2014) Temperature-dependent nonlinear phonon behavior in high-density carbon nanotube thin films. Appl Phys Lett 105(21):213105

    Article  Google Scholar 

  • Duzynska A, Taube A, Korona KP, Judek J, Zdrojek M (2015) Temperature-dependent thermal properties of single-walled carbon nanotube thin films. Appl Phys Lett 106(18):183108

    Article  Google Scholar 

  • Duzynska A, Swiniarski M, Wroblewska A, Lapinska A, Zeranska K, Judek J, Zdrojek M (2016) Phonon properties in different types of single-walled carbon nanotube thin films probed by Raman spectroscopy. Carbon 105:377–386

    Article  CAS  Google Scholar 

  • Ebbesen TW, Takada T (1995) Topological and sp3 defect structures in nanotubes. Carbon 33(7):973–978

    Article  CAS  Google Scholar 

  • Feng Y, Inoue T, An H, Xiang R, Chiashi S, Maruyama S (2018) Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes. Appl Phys Lett 112(19):191904

    Article  Google Scholar 

  • Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95(6):065502

    Article  Google Scholar 

  • Gong Q-M, Li Z, Bai X-D, Li D, Zhao Y, Liang J (2004) Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater Sci Eng A 384(1–2):209–214

    Article  Google Scholar 

  • Grujicic M, Cao G, Gersten B (2004) Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Mater Sci Eng B 107(2):204–216

    Article  Google Scholar 

  • Gu Y, Chen Y (2007) Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations. Phys Rev B 76(13):134110

    Article  Google Scholar 

  • Guo J, Wang X, Wang T (2007) Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J Appl Phys 101(6):063537

    Article  Google Scholar 

  • Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944

    Article  CAS  Google Scholar 

  • Hone J (2004) Carbon nanotubes: thermal properties. In: Dekker encyclopedia of nanoscience and nanotechnology, vol 7. pp 603–610

    Google Scholar 

  • Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514

    Article  CAS  Google Scholar 

  • Hone J, Batlogg B, Benes Z, Johnson AT, Fischer JE (2000) Quantized phonon spectrum of single-wall carbon nanotubes. Science 289(5485):1730–1733

    Article  CAS  Google Scholar 

  • Hou J, Wang X, Guo J (2006a) Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J Phys D Appl Phys 39(15):3362

    Article  CAS  Google Scholar 

  • Hou J, Wang X, Liu C, Cheng H (2006b) Development of photothermal-resistance technique and its application to thermal diffusivity measurement of single-wall carbon nanotube bundles. Appl Phys Lett 88(18):181910

    Article  Google Scholar 

  • Hu XJ, Padilla AA, Xu J, Fisher TS, Goodson KE (2006) 3-omega measurements of vertically oriented carbon nanotubes on silicon. 1109–1113

    Google Scholar 

  • Hummel RE (2011) Electronic properties of materials. Springer Science & Business Media, Berlin/Heidelberg, Germany

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Google Scholar 

  • Ishii H, Kobayashi N, Hirose K (2007) Electron–phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E 40(2):249–252

    Article  CAS  Google Scholar 

  • Jackson EM, Laibinis PE, Collins WE, Ueda A, Wingard CD, Penn B (2016) Development and thermal properties of carbon nanotube-polymer composites. Compos Part B 89:362–373

    Article  CAS  Google Scholar 

  • Jorge GA, Bekeris V, Acha C, Escobar MM, Goyanes S, Zilli D, Cukierman AL, Candal RJ (2009) Effects of phonon dimensionality in the specific heat of multiwall carbon nanotubes at low temperatures. In Journal of physics: conference series. IOP Publishing, London, United Kingdom, vol 167(1), p 012008

    Google Scholar 

  • Jorge GA, Bekeris V, Escobar MM, Goyanes S, Zilli D, Cukierman AL, Candal RJ (2010) A specific heat anomaly in multiwall carbon nanotubes as a possible sign of orientational order–disorder transition. Carbon 48(2):525–530

    Article  CAS  Google Scholar 

  • Kasuya A, Saito Y, Sasaki Y, Fukushima M, Maedaa T, Horie C, Nishina Y (1996) Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A 217:46–47

    Article  Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502

    Article  CAS  Google Scholar 

  • Kumanek B, Janas D (2019) Thermal conductivity of carbon nanotube networks: a review. J Mater Sci 54(10):7397–7427

    Article  CAS  Google Scholar 

  • Kumaresan V, Velraj R (2012) Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta 545:180–186

    Article  CAS  Google Scholar 

  • Lasjaunias J-C, Biljaković K, Benes Z, Fischer JE, Monceau P (2002) Low-temperature specific heat of single-wall carbon nanotubes. Phys Rev B 65(11):113409

    Article  Google Scholar 

  • Lavin JG, Subramoney S, Ruoff RS, Berber S, Tomanek D (2002) Scrolls and nested tubes in multiwall carbon nanotubes. Carbon 40(7):1123–1130

    Article  Google Scholar 

  • Lee KJ, Yoon SH, Jang J (2007) Carbon nanofibers: a novel nanofiller for nanofluid applications. Small 3(7):1209–1213

    Article  CAS  Google Scholar 

  • Li Q, Liu C, Wang X, Fan S (2009a) Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 20(14):145702

    Article  Google Scholar 

  • Li Y, Qiu X, Yin Y, Yang F, Fan Q (2009b) The specific heat of carbon nanotube networks and their potential applications. J Phys D Appl Phys 42(15):155405

    Article  Google Scholar 

  • Lin W, Shang J, Gu W, Wong CP (2012) Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique. Carbon 50(4):1591–1603

    Article  CAS  Google Scholar 

  • Lindsay L, Broido DA, Mingo N (2009) Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys Rev B 80(12):125407

    Article  Google Scholar 

  • Liu H, Chen J, Yang H (2004) Structural and electronic properties of defect and intramolecular junctions for single-walled carbon nanotube. Phys Status Solidi B 241(1):127–133

    Article  CAS  Google Scholar 

  • Lu AJ, Pan BC (2004) Nature of single vacancy in achiral carbon nanotubes. Phys Rev Lett 92(10):105504

    Article  CAS  Google Scholar 

  • Lu L, Yi W, Zhang DL (2001) 3ω method for specific heat and thermal conductivity measurements. Rev Sci Instrum 72(7):2996–3003

    Article  CAS  Google Scholar 

  • Maeda T, Horie C (1999) Phonon modes in single-wall nanotubes with a small diameter. Phys B Condens Matter 263:479–481

    Article  Google Scholar 

  • Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85(3):1295

    Article  CAS  Google Scholar 

  • Maruyama S (2002) A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys B Condens Matter 323(1–4):193–195

    Article  CAS  Google Scholar 

  • Maultzsch J, Reich S, Thomsen C, Dobardžić E, Milošević I, Damnjanović M (2002) Phonon dispersion of carbon nanotubes. Solid State Commun 121(9–10):471–474

    Article  CAS  Google Scholar 

  • Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT Jr, Liu J, Smalley RE (2000) Surface defect site density on single walled carbon nanotubes by titration. Chem Phys Lett 324(1–3):213–216

    Article  CAS  Google Scholar 

  • Meng FY, Zhou LG, Shi S-Q, Yang R (2003) Atomic adsorption of catalyst metals on Stone-Wales defects in carbon nanotubes. Carbon (New York, NY) 41(10):2023–2025

    CAS  Google Scholar 

  • Meng FY, Ogata S, Xu DS, Shibutani Y, Shi S-Q (2007) Thermal conductivity of an ultrathin carbon nanotube with an X-shaped junction. Phys Rev B 75(20):205403

    Article  Google Scholar 

  • Mensah SY, Allotey FKA, Nkrumah G, Mensah NG (2004) High electron thermal conductivity of chiral carbon nanotubes. Physica E 23(1–2):152–158

    Article  CAS  Google Scholar 

  • Mera Y, Harada Y, Arima S, Hata K, Shin S, Maeda K (2009) Defects generation in single-walled carbon nanotubes induced by soft X-ray illumination. Chem Phys Lett 473(1–3):138–141

    Article  CAS  Google Scholar 

  • Meunier V, Lambin P (2000) Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes. Carbon 38(11–12):1729–1733

    Article  CAS  Google Scholar 

  • Mingo N, Broido DA (2005a) Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett 95(9):096105

    Article  CAS  Google Scholar 

  • Mingo N, Broido DA (2005b) Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Lett 5(7):1221–1225

    Article  CAS  Google Scholar 

  • Mizel A, Benedict LX, Cohen ML, Louie SG, Zettl A, Budraa NK, Beyermann WP (1999) Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Phys Rev B 60(5):3264

    Article  CAS  Google Scholar 

  • Muratov VB, Vasil’ev OO, Kulikov LM, Garbuz VV, Nesterenko YV, Duda TI (2012) Thermodynamic properties of multiwalled carbon nanotubes. J Superhard Mater 34(3):173–178

    Article  Google Scholar 

  • Murshed SMS, De Castro CAN (2014) Superior thermal features of carbon nanotubes-based nanofluids – a review. Renew Sust Energ Rev 37:155–167

    Article  CAS  Google Scholar 

  • Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349

    Article  CAS  Google Scholar 

  • Odom TW, Huang J-L, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. ACS Publications, Washington, DC

    Google Scholar 

  • Omari R, Almahmoud E, Talla JA, Al-Khaza’leh K, Ghozlan A, Al-Diabat A (2020) Influence of substitutional doping on the electronic properties of carbon nanotubes with Stone Wales defects: density functional calculations. Fullerenes Nanotubes Carbon Nanostruct 28(10):828–840

    Article  CAS  Google Scholar 

  • Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12(1):21

    Article  CAS  Google Scholar 

  • Osváth Z, Tapasztó L, Vértesy G, Koós AA, Horváth ZE, Gyulai J, Biró LP (2007) STM imaging of carbon nanotube point defects. Phys Status Solidi A 204(6):1825–1829

    Article  Google Scholar 

  • Pan T-W, Kuo W-S, Tai N-H (2017) Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films. Compos Sci Technol 151:44–51

    Article  CAS  Google Scholar 

  • Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32(9):1679–1684

    Article  CAS  Google Scholar 

  • Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    Article  CAS  Google Scholar 

  • Popov VN (2004) Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems. Carbon 42(5–6):991–995

    Article  CAS  Google Scholar 

  • Pradhan NR, Duan H, Liang J, Iannacchione GS (2009) The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20(24):245705

    Article  CAS  Google Scholar 

  • Prasher R (2008) Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 77(7):075424

    Article  Google Scholar 

  • Qiu L, Wang X, Su G, Tang D, Zheng X, Zhu J, Wang Z, Norris PM, Bradford PD, Zhu Y (2016a) Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Sci Rep 6(1):1–14

    Google Scholar 

  • Qiu L, Wang X, Tang D, Zheng X, Norris PM, Wen D, Zhao J, Zhang X, Li Q (2016b) Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon 105:248–259

    Article  CAS  Google Scholar 

  • Qiu L, Zou H, Zhu N, Feng Y, Zhang X, Zhang X (2018) Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Appl Therm Eng 141:913–920

    Article  CAS  Google Scholar 

  • Qiu L, Guo P, Yang X, Ouyang Y, Feng Y, Zhang X, Zhao J, Zhang X, Li Q (2019a) Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145:650–657

    Article  CAS  Google Scholar 

  • Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X, Li Q (2019b) Enhancing the interfacial interaction of carbon nanotubes fibers by au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 141:497–505

    Article  CAS  Google Scholar 

  • Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, Zhang X, Norris PM, Markides CN, Mahian O (2020) A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys Rep 843:1–81

    Article  CAS  Google Scholar 

  • Rahman HA, Kirah K, Ghali H, Anis W (2010) Simulation of carbon nanotube photovoltaic arrays. In Carbon nanotubes, graphene, and associated devices III. International society for optics and photonics, vol 7761, p 77610S

    Google Scholar 

  • Ruan W, Wang Z, Li Y, Liu L (2011) In-situ heat capacity measurement of carbon nanotubes using suspended microstructure-based microcalorimetry. IEEE Trans Nanotechnol 11(2):367–373

    Article  Google Scholar 

  • Sauvajol JL, Anglaret E, Rols S, Alvarez L (2002) Phonons in single wall carbon nanotube bundles. Carbon 40(10):1697–1714

    Article  CAS  Google Scholar 

  • Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM (2014) A comparative review on the specific heat of nanofluids for energy perspective. Renew Sust Energ Rev 38:88–98

    Article  CAS  Google Scholar 

  • Small JP, Shi L, Kim P (2003) Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun 127(2):181–186

    Article  CAS  Google Scholar 

  • Sternberg M, Curtiss LA, Gruen DM, Kedziora G, Horner DA, Redfern PC, Zapol P (2006) Carbon ad-dimer defects in carbon nanotubes. Phys Rev Lett 96(7):075506

    Article  CAS  Google Scholar 

  • Sumarokov VV, Jeżowski A, Szewczyk D, Bagatski MI, Barabashko MS, Ponomarev AN, Kuznetsov VL, Moseenkov SI (2019) The low-temperature specific heat of MWCNTs. Low Temp Phys 45(3):347–354

    Article  CAS  Google Scholar 

  • Tambasov IA, Voronin AS, Evsevskaya NP, Kuznetsov YM, Luk’yanenko AV, Tambasova EV, Gornakov MO, Dorokhin MV, Loginov YY (2020) Experimental study of the thermal conductivity of single-walled carbon nanotube-based thin films. Phys Solid State 62(6):1090–1094

    Article  CAS  Google Scholar 

  • Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501

    Article  CAS  Google Scholar 

  • Thorpe MF, Tománek D, Enbody RJ, Enbody RJ (2000) Science and application of nanotubes. Springer Science & Business Media, Berlin/Heidelberg, Germany

    Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  • Varshney V, Patnaik SS, Roy AK, Froudakis G, Farmer BL (2010) Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4(2):1153–1161

    Article  CAS  Google Scholar 

  • Wang P, Cao Q, Wang H, Liu S, Chen Y, Peng Q (2021) CNT-sandwiched copper composites as super thermal conductors for heat management. Physica E 128:114557

    Article  CAS  Google Scholar 

  • Wu S, Peng S, Wang CH (2018) Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. Polymers 10(5):542

    Article  Google Scholar 

  • Xie H, Cai A, Wang X (2007) Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys Lett A 369(1–2):120–123

    Article  CAS  Google Scholar 

  • Xie Y, Wang T, Zhu B, Yan C, Zhang P, Wang X, Eres G (2018) 19-fold thermal conductivity increase of carbon nanotube bundles toward high-end thermal design applications. Carbon 139:445–458

    Article  CAS  Google Scholar 

  • Xing C, Munro T, Jensen C, Ban H, Copeland CG, Lewis RV (2017) Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods. Mater Des 119:22–29

    Article  CAS  Google Scholar 

  • Xu Z, Buehler MJ (2009) Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 3(9):2767–2775

    Article  CAS  Google Scholar 

  • Yamamoto T, Watanabe K (2006) Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys Rev Lett 96(25):255503

    Article  Google Scholar 

  • Yamamoto T, Watanabe S, Watanabe K (2004) Universal features of quantized thermal conductance of carbon nanotubes. Phys Rev Lett 92(7):075502

    Article  Google Scholar 

  • Yang DJ, Wang SG, Zhang Q, Sellin PJ, Chen G (2004) Thermal and electrical transport in multi-walled carbon nanotubes. Phys Lett A 329(3):207–213

    Article  CAS  Google Scholar 

  • Yi W, Lu L, Dian-Lin Z, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59(14):R9015

    Article  CAS  Google Scholar 

  • Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5(9):1842–1846

    Article  CAS  Google Scholar 

  • Yuan J, Liew KM (2009) Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes. Carbon 47(6):1526–1533

    Article  CAS  Google Scholar 

  • Zhang X, Fujiwara S, Fujii M (2000) Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int J Thermophys 21(4):965–980

    Article  CAS  Google Scholar 

  • Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 66(16):165440

    Article  Google Scholar 

  • Zhang W, Zhu Z, Wang F, Wang T, Sun L, Wang Z (2004) Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 15(8):936

    Article  CAS  Google Scholar 

  • Zhang L, Zhang G, Liu C, Fan S (2012) High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett 12(9):4848–4852

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abohamzeh, E., Sheikholeslami, M. (2021). Thermal Properties of Carbon Nanotube. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics