Skip to main content

History of Carbon Nanotubes

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Carbon nanotubes (CNTs) and nano fibers (CNFs) are some of the most gifted materials from nanotechnology. CNTs are considered the materials of the twenty-first century. It is a nanostructured allotrope of carbon with a length-to-diameter ratio of more than 1,000,000. The products with CNTs used in commerce have increased greatly in the last decade. Many techniques, including arc discharge, laser ablation, and chemical vapor deposition, have been developed to produce nanotubes in sizeable quantities. In 2004, graphene, with a single-layered honeycomb structure, was discovered and became the “mother” of all carbon systems. All these discoveries are supposed to complete the carbon family. Their nanoscale size and extraordinary mechanical, electronic, transport, electrical and optical properties make them suitable for a range of applications. Electronics, engineering, optoelectronics, medicine, the defense industry, and molecular and biological systems are the main applications of CNTs. The global production of CNTs has increased from 30 tons in 2008 to nearly 3,400 tons in 2010, and the projected market for CNTs is predicted to worth $13.5 billion by 2026.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrahamson J, Wiles PG, Rhoades BL (1999) Structure of carbon fibers found on carbon arc anodes. Carbon 37:1873–1874

    Article  CAS  Google Scholar 

  • Ahmad A, Kholoud MM, El-NourbReda A, Ammarc AA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem 5:1–23

    Article  CAS  Google Scholar 

  • Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    Article  CAS  Google Scholar 

  • Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Holmes W, Files B, Yowell L (2004) Protocol for the characterization of single-wall carbon nanotube material quality. Carbon 42:1783–1791

    Article  CAS  Google Scholar 

  • Awasthi K, Kumar R, Raghubanshi H, Awasthi S, Pandey R, Singh D, Srivastava ON (2011) Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials. Bull Mater Sci 34:607–614

    Article  CAS  Google Scholar 

  • Bergeret C, Cousseau J, Fernandez V, Mevellec J-Y, Lefrant S (2008) Spectroscopic evidence of carbon nanotubes’ metallic character loss induced by covalent functionalization via nitric acid purification. J Phys Chem C 112:16411–16416

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  • Boehm HP (1997) The first observation of carbon nanotubes. Carbon 35:581–584

    Article  CAS  Google Scholar 

  • Borowiak-Palen E, Pichler T, Liu X, Kunpfer M, Graff A, Jost O, Pompe W, Kalenczuk RJ, Fink J (2002) Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chem Phys Lett 363:567–572

    Article  CAS  Google Scholar 

  • Burian A, Koloczk J, Dore J, Hannon AC, Nagy JB, Fonseca A (2004) Radial distribution function analysis of spatial atomic correlations in carbon nanotubes. Diam Relat Mater 13:1261–1265

    Article  CAS  Google Scholar 

  • Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP (2005) Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 46(2):439–444

    Article  CAS  Google Scholar 

  • Cheng J, Fernando KAS, Veca LM, Sun Y-P, Lamond AI, Lam YW et al (2008) Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2(10):2085–2094

    Article  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:15–22

    Article  CAS  Google Scholar 

  • Endo M, Dresselhaus MS (2003) Carbon fibers and carbon nanotubes, Shinshu University, Japan & MIT, file:millie-science-endo99.tex

    Google Scholar 

  • Endo M, Saito R, Dresselhaus MS, Dresselhaus G (1997) Carbon fibers to carbon nanotubes. CRC Press, Boca Raton

    Google Scholar 

  • Esquivel EV, Murr LE (2004) A TEM analysis of nanoparticulates in a polar ice core. Mater Charact 52:15–25

    Article  CAS  Google Scholar 

  • Farkas E, Anderson ME, Chen ZH, Rinzler AG (2002) Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chem Phys Lett 363:111–116

    Article  CAS  Google Scholar 

  • Ghosh P, Afre RA, Soga T, Jimbo T (2007) A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil. Mater Lett 61:3768–3770

    Article  CAS  Google Scholar 

  • Ghosh P, Soga T, Afre RA, Jimbo T (2008) Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: turpentine oil. J Alloys Compd 462:289–293

    Article  CAS  Google Scholar 

  • Gromov A, Dittmer S, Svensson J, Nerushev OA, Perez-Garcia SA, Licea-Jimenez L et al (2005) Covalent amino-functionalisation of single-wall carbon nanotubes. J Mater Chem 15(32):3334–3339

    Article  CAS  Google Scholar 

  • Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett 2(9):1009

    Article  CAS  Google Scholar 

  • Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54

    Article  CAS  Google Scholar 

  • Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith A, Smalley RE (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296:195–202

    Article  CAS  Google Scholar 

  • Hajime G, Terumi F, Yoshiya F, Toshiyuki O (2002) Method of purifying single wall carbon nanotubes from metal catalyst impurities. Honda Giken Kogyo Kabushiki Kaisha

    Google Scholar 

  • Hughes TV, Chambers CR (1889) Manufacture of N Filaments. US Patent No.:405480

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Ijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  • Jackson P, Jacobsen N, Baun A et al (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 13(7):154

    Article  CAS  Google Scholar 

  • Kam NWS, Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  Google Scholar 

  • Kiang C, Endo M, Ajayan P, Dresselhaus G, Dresselhaus M (1998) Size effects in carbon nanotubes. Phys Rev Lett 81:1869

    Article  CAS  Google Scholar 

  • Kim K, Klaine S, Lin S et al (2010) Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Env Toxicol Chem 29(1):122–126

    Article  CAS  Google Scholar 

  • Kingston C (2007) Challenges in the characterization of carbon nanotubes: the need for standards. Molecular and nanomaterial architectures group tri-national workshop on standards for nanotechnology

    Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Kumar M, Kakamu K, Okazaki T, Ando Y (2004) Field emission from camphor-pyrolyzed carbon nanotubes. Chem Phys Lett 385:161–165

    Article  CAS  Google Scholar 

  • Kuzmany H, Plank W, Hulman M, Kramberger C, Gruneis A, Pichler T, Peterlik H, Kataura H, Achiba Y (2001) Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur Phys JB 22(3):307–320

    Article  Google Scholar 

  • Lee Y, Cho T, Lee B, Rho J, An K, Lee Y (2003) Surface properties of fluorinated single-walled carbon nanotubes. J Fluor Chem 120:99–104

    Article  CAS  Google Scholar 

  • Li M, Boggs M, Beebe TP, Huang CP (2008) Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon 46:466–475

    Article  CAS  Google Scholar 

  • Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chun TS, Goh SH, Leong KW (2005) Polyethylenimine grafted multi-walled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed Engl 44:4782–4785

    Article  CAS  Google Scholar 

  • Lu C, Su F (2007) Adsorption of natural organic matter by carbon nanotubes. Sep Purif Technol 58:113–121

    Article  CAS  Google Scholar 

  • Niyogi S, Hu H, Hamon MA, Bhowmik P, Zhao B, Rpzenzhak SM, Chen J, Itkis ME, Meier MS, Haddon RC (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J Am Chem Soc 123(4):733–734

    Article  CAS  Google Scholar 

  • Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  CAS  Google Scholar 

  • Panhuis MIH (2003) Vaccine delivery by carbon nanotubes. Chem Biol 10:898–899

    CAS  Google Scholar 

  • Paul S, Samdarshi SK (2011) A green precursor for carbon nanotube synthesis. New Carbon Mater 26:85–88

    Article  CAS  Google Scholar 

  • Petersen E, Zhang L, Mattison N et al (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45(23):9837–9856

    Article  CAS  Google Scholar 

  • Pratik M, Ashwin P, Prasad E (2021) Carbon nanotubes market

    Google Scholar 

  • Qin LH, Zhao X, Hirahara K, Miyamoto Y, Ando Y, Iijima S (2000) Materials science: the smallest carbon nanotube. Nature 408:50–51

    Article  CAS  Google Scholar 

  • Radushkevich LV, Lukyanovich VM (1952) On the carbon structure formed during thermal decomposition of carbon monoxide in the presence of iron’ (in Russian). Zh Fizich Khim 26:88

    CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Reibold M, Paufler P, Levin AA et al (2006) Materials: carbon nanotubes in an ancient Damascus sabre. Nature 444:286

    Article  CAS  Google Scholar 

  • Robertson J (2004) Realistic applications of CNT. Mater Today 7:46–52

    Article  CAS  Google Scholar 

  • Ryabov VV, Ponomarchuk VA, Titov AT, Semenova DV (2012) Micro- and nanostructures of carbon in Pt-low-sulfide ores of the Talnakh deposit (Siberian platform). Dokl Earth Sci 446:1193–1195

    Article  CAS  Google Scholar 

  • Saito Y, Okuda M, Tomita M, Hayashi T (1995) Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source. Chem Phys Lett 236:419–426

    Article  CAS  Google Scholar 

  • Sattler K (1995) Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon 33:915–920

    Article  CAS  Google Scholar 

  • Savage T, Bhattacharya S, Sadanadan B, Gaillard J, Tritt TM, Sun Y-P et al (2003) Photoinduced oxidation of carbon nanotubes. J Phys Condens Matter 15:5915–9521

    Article  CAS  Google Scholar 

  • Service RF (1998) Superstrong nanotubes show they are smart too. Science 281(5379):940–942

    Article  CAS  Google Scholar 

  • Singaravelu V, Schreiber M, Muthuramkumar S, Misra M, Mohanty AK (2017) Carbon nanotubes from renewable feedstocks: a move toward sustainable nanofabrication. Appl Polym Sci 134:44255

    Google Scholar 

  • Smith B, Wepasnick K, Schrote KE, Cho H-H, Ball WP, Fairbrother DH (2009) Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure–property relationship. Langmuir 25(17):9767–9776

    Article  CAS  Google Scholar 

  • Suriani AB, Azira AA, Nik SF, Md Nor R, Rusop M (2009) Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater Lett 63:2704–2706

    Article  CAS  Google Scholar 

  • Suriani AB, Dalila AR, Mohamed A, Mamat MH, Salina M, Rosmi MS, Rosly J, Md Nor R, Rusop M (2013) Vertically aligned carbon nanotubes synthesized from waste chicken fat. Mater Lett 101:61–64

    Article  CAS  Google Scholar 

  • Tennent HG (1987) Carbon fibrils, method for producing same and compositions containing same, US Patent No.: 4663230 A, Assignee: Hyperion Catalysis International, Inc.

    Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483

    Article  CAS  Google Scholar 

  • Thien-Nga L, Hernadi K, Ljubovic E, Garaj S, Forro L (2002) Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett 2(12):1349–1352

    Article  CAS  Google Scholar 

  • Thostenson ET, Zhifeng R, Tsu-Wei C (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  • Tsai TY, Tai NH, Chen KC, Lee SH, Chan LH, Chang YY (2009) Growth of vertically aligned carbon nanotubes on glass substrate at 450°C through the thermal chemical vapour deposition method. Diam Relat Mater 18:307–311

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Pelizzetti E, Harrison MAJ, Olariu RI et al (2006) Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem Soc Rev 35:441–453

    CAS  Google Scholar 

  • Wang N, Tang ZK, Li GD, Chen JS (2000) Materials science: single-walled 4 Å carbon nanotube arrays. Nature 408:50

    Article  CAS  Google Scholar 

  • Xiao J (2007) Study of factors affecting the synthesis of carbon nanotubes by spray pyrolysis, Master Thesis, University of Texas, El Paso

    Google Scholar 

  • Yang D-Q, Sacher E (2008) Strongly enhanced interaction between evaporated Pt Nanoparticles and functionalized multiwalled carbon nanotubes via plasma surface modifications: effects of physical and chemical defects. J Phys Chem C 112:4075–4082

    Article  CAS  Google Scholar 

  • Yang Z, Chen X, Nie H, Zhang K, Li W, Yi B, Xu L (2008) Direct synthesis of ultralong carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism. Nanotechnology 19:085606

    Article  CAS  Google Scholar 

  • Yao D-S, Cao H, Wen S, Liu D-L, Bai Y, Zheng W-J (2006) A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with a flatoxin – detoxifizyme (ADT Z). Bioelectrochemistry 68:126–133

    Article  CAS  Google Scholar 

  • Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555

    Article  CAS  Google Scholar 

  • Zeni O, Palumbo R, Zeni L, Sarti M, Scarfi MR (2008) Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes. Sensors 8:488–499

    Article  CAS  Google Scholar 

  • Zhang Y (2007) Physical properties investigation of nanostructure material and their application, Ph.D. Thesis, University of California, Santa Cruz

    Google Scholar 

  • Zhang M, Li J (2009) Carbon nanotube in different shapes. Mater Today 12(6):12–18

    Article  CAS  Google Scholar 

  • Zobir SAM, Suriani AB, Abdullah S, Zainal Z, Sarijo SH, Rusop M (2012) Raman spectroscopic study of carbon nanotubes prepared using Fe/ZnO-palm olein-chemical vapour deposition. J Nanomater 2012:1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Srikanth, N., Kumar, A.C. (2022). History of Carbon Nanotubes. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics