Skip to main content

Carbon Nanotubes: General Introduction

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Noteworthy developments have been realized in the pioneering material technology and engineering-scale manufacturing, particularly in the fabrication of various micro/nano devices, which have enabled the utilization of a variety of materials in numerous functional applications. Over few decades, carbon nanotubes (CNTs) are upraised as an amazing nanomaterial, and have been successfully employed in several fields of materials science and nanotechnology, such as sensing, medicines, electronics, environment, as well as green energy production and storage technologies. Therefore, CNTs should meet a broad range of the definite criteria, for example, high aspect ratio, good surface modification, high porosity, desired conductivity, nontoxicity, selectivity, and specificity, as well as appropriate compatibility for the successful assembling of devices. The foremost purpose of this chapter is to briefly discuss and summarize the fundamental concepts, construction strategies, promising properties, and the significant applications of CNT nanostructures for emerging technologies. Besides, we mainly focus on the general introduction and potential material for present and impending commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube – a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int 1:100003

    Google Scholar 

  • Araromi OA, Rosset S, Shea HR (2015) High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl Mater Interfaces 7:18046–18053

    CAS  Google Scholar 

  • Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    CAS  Google Scholar 

  • Chou T-W, Gao L, Thostenson ET, Zhang Z, Byun J-H (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70:1–19

    CAS  Google Scholar 

  • Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    CAS  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Google Scholar 

  • Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178

    Google Scholar 

  • Fang X, Shashurin A, Teel G, Keidar M (2016) Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon 107:273–280

    CAS  Google Scholar 

  • Gogotsi Y (2003) How safe are nanotubes and other nanofilaments? Mater Res Innov 7:192–194

    CAS  Google Scholar 

  • Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371

    CAS  Google Scholar 

  • Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yumura M, Hata K (2008) Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat Nanotechnol 3:289–294

    CAS  Google Scholar 

  • Ibraheem S, Chen S, Li J, Li W, Gao X, Wang Q, Wei Z (2019a) Three-dimensional Fe,N-decorated carbon-supported NiFeP nanoparticles as an efficient bifunctional catalyst for rechargeable zinc–O2 batteries. ACS Appl Mater Interfaces 11:699–705

    CAS  Google Scholar 

  • Ibraheem S, Chen S, Li J, Wang Q, Wei Z (2019b) In situ growth of vertically aligned FeCoOOH-nanosheets/nanoflowers on Fe, N co-doped 3D-porous carbon as efficient bifunctional electrocatalysts for rechargeable zinc–O2 batteries. J Mater Chem A 7:9497–9502

    CAS  Google Scholar 

  • Ibraheem S, Chen S, Peng L, Li J, Li L, Liao Q, Shao M, Wei Z (2020) Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Appl Catal B Environ 265:118569

    CAS  Google Scholar 

  • Ibraheem S, Li X, Shah SSA, Najam T, Yasin G, Iqbal R, Hussain S, Ding W, Shahzad F (2021) Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl Mater Interfaces 13:10972–10978

    CAS  Google Scholar 

  • Ibraheem S, Yasin G, Kumar A, Mushtaq MA, Ibrahim S, Iqbal R, Tabish M, Ali S, Saad A (2022) Iron-cation-coordinated cobalt-bridged-selenides nanorods for highly efficient photo/electrochemical water splitting. Applied Catalysis B: Environmental 304:120987. https://doi.org/10.1016/j.apcatb.2021.120987

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  • Jabbar A, Yasin G, Khan WQ, Anwar MY, Korai RM, Nizam MN, Muhyodin G (2017) Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv 7:31100–31109

    CAS  Google Scholar 

  • Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6:723–733

    CAS  Google Scholar 

  • Kumar R, Singh RK, Singh DP (2016) Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: graphene and CNTs. Renew Sust Energ Rev 58:976–1006

    CAS  Google Scholar 

  • Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K-H (2018) Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci 64:219–253

    Google Scholar 

  • Kumar A, Das DK, Vashistha VK, Ibraheem S, Yasin G, Gautam S, Sharma V (2021a) A novel CoN4-driven self-assembled molecular engineering for oxygen reduction reaction. Int J Hydrog Energy 46(52):26499–26506

    Google Scholar 

  • Kumar A, Yasin G, Vashistha VK, Das DK, Rehman MU, Iqbal R, Mo Z, Nguyen TA, Slimani Y, Nazir MT, Zhao W (2021b) Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: a hybrid nanoarchitecture electrocatalyst. Diam Relat Mater 113:108272

    CAS  Google Scholar 

  • Kumar A, Vashistha VK, Das DK, Ibraheem S, Yasin G, Iqbal R, Nguyen TA, Gupta RK, Islam MR (2021c) M-N-C-based single-atom catalysts for H2 O2 & CO2 electrocatalysis: activity descriptors active sites identification challenges and prospects. Fuel 304:121420. https://doi.org/10.1016/j.fuel.2021.121420

  • Kumar A, Ibraheem S, Nguyen TA, Gupta RK, Maiyalagan T, Yasin G (2021d) Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction. Coordination Chemistry Reviews 446:214122. https://doi.org/10.1016/j.ccr.2021.214122

    Article  CAS  Google Scholar 

  • Laplaze D, Bernier P, Maser WK, Flamant G, Guillard T, Loiseau A (1998) Carbon nanotubes: the solar approach. Carbon 36:685–688

    CAS  Google Scholar 

  • Laurent C, Flahaut E, Peigney A (2010) The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon 48:2994–2996

    CAS  Google Scholar 

  • Li Y (2021) Carbon nanotube research in its 30th year. ACS Nano 15:9197–9200

    Google Scholar 

  • Li J, Papadopoulos C, Xu J (1999) Growing Y-junction carbon nanotubes. Nature 402:253–254

    CAS  Google Scholar 

  • Li X, Cao A, Jung YJ, Vajtai R, Ajayan PM (2005) Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett 5:1997–2000

    CAS  Google Scholar 

  • Lim HE, Miyata Y, Kitaura R, Nishimura Y, Nishimoto Y, Irle S, Warner JH, Kataura H, Shinohara H (2013) Growth of carbon nanotubes via twisted graphene nanoribbons. Nat Commun 4:2548

    Google Scholar 

  • Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592–1605

    CAS  Google Scholar 

  • Malik MU, Tabish M, Yasin G, Anjum MJ, Jameel S, Tang Y, Zhang X, Manzoor S, Ibraheem S, Khan WQ (2021) Electroless codeposition of GO incorporated silane nanocomposite coating onto AZ91 Mg alloy: effect of GO content on its morphology, mechanical and corrosion protection properties. J Alloys Compd 883:160790

    CAS  Google Scholar 

  • Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 21:632–646

    Google Scholar 

  • Muhammad N, Yasin G, Li A, Chen Y, Saleem HM, Liu R, Li D, Sun Y, Zheng S, Chen X, Song H (2020) Volumetric buffering of manganese dioxide nanotubes by employing ‘as is’ graphene oxide: an approach towards stable metal oxide anode material in lithium-ion batteries. J Alloys Compd 842:155803

    CAS  Google Scholar 

  • Mushtaq MA, Arif M, Fang X, Yasin G, Ye W, Basharat M, Zhou B, Yang S, Ji S, Yan D (2021) Journal of Materials Chemistry A 9(5):2742–2753. https://doi.org/10.1039/D0TA10620H

  • Nadeem M, Yasin G, Bhatti MH, Mehmood M, Arif M, Dai L (2018) Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J Power Sources 402:34–42

    CAS  Google Scholar 

  • Nadeem M, Yasin G, Arif M, Bhatti MH, Sayin K, Mehmood M, Yunus U, Mehboob S, Ahmed I, Flörke U (2020) Pt-Ni@PC900 hybrid derived from layered-structure cd-MOF for fuel cell ORR activity. ACS Omega 5:2123–2132

    CAS  Google Scholar 

  • Nadeem M, Yasin G, Arif M, Tabassum H, Bhatti MH, Mehmood M, Yunus U, Iqbal R, Nguyen TA, Slimani Y, Song H, Zhao W (2021) Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chem Eng J 409:128205

    CAS  Google Scholar 

  • Pyatkov F, Fütterling V, Khasminskaya S, Flavel BS, Hennrich F, Kappes MM, Krupke R, Pernice WHP (2016) Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photonics 10:420–427

    CAS  Google Scholar 

  • Segawa Y, Ito H, Itami K (2016) Structurally uniform and atomically precise carbon nanostructures. Nature Reviews Materials 1:15002

    CAS  Google Scholar 

  • Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    CAS  Google Scholar 

  • Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137

    CAS  Google Scholar 

  • Tabish M, Malik MU, Khan MA, Yasin G, Asif HM, Anjum MJ, Khan WQ, Ibraheem S, Nguyen TA, Slimani Y, Nazir MT (2021a) Construction of NiCo/graphene nanocomposite coating with bulges-like morphology for enhanced mechanical properties and corrosion resistance performance. J Alloys Compd 867:159138

    CAS  Google Scholar 

  • Tabish M, Yasin G, Anjum MJ, Malik MU, Zhao J, Yang Q, Manzoor S, Murtaza H, Khan WQ (2021b) Reviewing the current status of layered double hydroxide-based smart nanocontainers for corrosion inhibiting applications. J Mater Res Technol 10:390–421

    CAS  Google Scholar 

  • Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331

    CAS  Google Scholar 

  • Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44:1517–1520

    CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    CAS  Google Scholar 

  • Ullah S, Yasin G, Ahmad A, Qin L, Yuan Q, Khan AU, Khan UA, Rahman AU, Slimani Y (2020) Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorganic Chem Front 7:1750–1761

    CAS  Google Scholar 

  • Ullah S, Campéon BDL, Ibraheem S, Yasin G, Pathak R, Nishina Y, Anh Nguyen T, Slimani Y, Yuan Q (2021) Enabling the fast lithium storage of large-scalable γ-Fe2O3/carbon nanoarchitecture anode material with an ultralong cycle life. J Ind Eng Chem

    Google Scholar 

  • Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141

    CAS  Google Scholar 

  • Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33:188–215

    Google Scholar 

  • Wen L, Li F, Cheng H-M (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337

    CAS  Google Scholar 

  • Yan Y, Miao J, Yang Z, Xiao F-X, Yang HB, Liu B, Yang Y (2015) Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem Soc Rev 44:3295–3346

    CAS  Google Scholar 

  • Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524

    CAS  Google Scholar 

  • Yang R-X, Chuang K-H, Wey M-Y (2016) Carbon nanotube and hydrogen production from waste plastic gasification over Ni/Al–SBA-15 catalysts: effect of aluminum content. RSC Adv 6:40731–40740

    CAS  Google Scholar 

  • Yasin G, Arif M, Nizam MN, Shakeel M, Khan MA, Khan WQ, Hassan TM, Abbas Z, Farahbakhsh I, Zuo Y (2018a) Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition. RSC Adv 8:20039–20047

    CAS  Google Scholar 

  • Yasin G, Arif M, Shakeel M, Dun Y, Zuo Y, Khan WQ, Tang Y, Khan A, Nadeem M (2018b) Exploring the nickel–graphene nanocomposite coatings for superior corrosion resistance: manipulating the effect of deposition current density on its morphology, mechanical properties, and erosion-corrosion performance. Adv Eng Mater 20:1701166

    Google Scholar 

  • Yasin G, Khan MA, Arif M, Shakeel M, Hassan TM, Khan WQ, Korai RM, Abbas Z, Zuo Y (2018c) Synthesis of spheres-like Ni/graphene nanocomposite as an efficient anti-corrosive coating; effect of graphene content on its morphology and mechanical properties. J Alloys Compd 755:79–88

    CAS  Google Scholar 

  • Yasin G, Khan MA, Khan WQ, Mehtab T, Korai RM, Lu X, Nazir MT, Zahid MN (2019) Facile and large-scalable synthesis of low cost hard carbon anode for sodium-ion batteries. Res Phys 14:102404

    Google Scholar 

  • Yasin G, Anjum MJ, Malik MU, Khan MA, Khan WQ, Arif M, Mehtab T, Nguyen TA, Slimani Y, Tabish M, Ali D, Zuo Y (2020a) Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets. Diam Relat Mater 104:107763

    CAS  Google Scholar 

  • Yasin G, Arif M, Mehtab T, Lu X, Yu D, Muhammad N, Nazir MT, Song H (2020b) Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Mater 25:644–678

    Google Scholar 

  • Yasin G, Arif M, Mehtab T, Shakeel M, Khan MA, Khan WQ (2020c) Chapter 14 – metallic nanocomposite coatings. In: Rajendran S, Nguyen TANH, Kakooei S, Yeganeh M, Li Y (eds) Corrosion protection at the nanoscale. Elsevier, USA

    Google Scholar 

  • Yasin G, Arif M, Mehtab T, Shakeel M, Mushtaq MA, Kumar A, Nguyen TA, Slimani Y, Nazir MT, Song H (2020d) A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers 7:402–410

    Google Scholar 

  • Yasin G, Arif M, Mushtaq MA, Shakeel M, Muhammad N, Tabish M, Kumar A, Nguyen TA (2021a) Chapter Nine – nanostructured anode materials in rechargeable batteries. In: Song H, Venkatachalam R, Nguyen TA, Wu HB, Nguyen-Tri P (eds) Nanobatteries and nanogenerators. Elsevier, USA

    Google Scholar 

  • Yasin G, Muhammad N, Kumar A, Tabish M, Malik MU, Nazir MT, Liu D, Nguyen TA (2021b) Chapter Eleven – nanostructured cathode materials in rechargeable batteries. In: Song H, Venkatachalam R, Nguyen TA, Wu HB, Nguyen-Tri P (eds) Nanobatteries and nanogenerators. Elsevier, USA

    Google Scholar 

  • Yasin G, Muhammad N, Nguyen TA, Nguyen-Tri P (2021c) Chapter Five - Battery-nanogenerator hybrid systems. In: Song H, Venkatachalam R, Nguyen TA, Wu HB, Nguyen-Tri P (eds) Nanobatteries and nanogenerators. Elsevier, USA

    Google Scholar 

  • Yasin G, Muhammad N, Nguyen TA, Nguyen-Tri P (2021d) Chapter one - Nanobattery: an introduction. In: Song H, Venkatachalam R, Nguyen TA, Wu HB, Nguyen-Tri P (eds) Nanobatteries and nanogenerators. Elsevier, USA

    Google Scholar 

  • Yasin G, Ibrahim S, Ibraheem S, Ali S, Iqbal R, Kumar A, Tabish M, Slimani Y, Nguyen TA, Xu H, Zhao W (2021e) Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc–air batteries. Journal of Materials Chemistry A 9(34):18222–18230. https://doi.org/10.1039/D1TA05812F

    Article  CAS  Google Scholar 

  • Yasin G, Ibraheem S, Ali S, Arif M, Ibrahim S, Iqbal R, Kumar A, Tabish M, Mushtaq MA, Saad A, Xu H, Zhao W (2022) Defects-engineered tailoring of tri-doped interlinked metal-free bifunctional catalyst with lower gibbs free energy of OER/HER intermediates for overall water splitting. Materials Today Chemistry 23:100634. https://doi.org/10.1016/j.mtchem.2021.100634

    Article  Google Scholar 

  • Yu D, Kumar A, Nguyen TA, Nazir MT, Yasin G (2020) High-voltage and ultrastable aqueous zinc–iodine battery enabled by N-doped carbon materials: revealing the contributions of nitrogen configurations. ACS Sustain Chem Eng 8:13769–13776

    CAS  Google Scholar 

  • Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265

    CAS  Google Scholar 

  • Zhang J, Terrones M, Park CR, Mukherjee R, Monthioux M, Koratkar N, Kim YS, Hurt R, Frackowiak E, Enoki T, Chen Y, Chen Y, Bianco A (2016) Carbon science in 2016: status, challenges and perspectives. Carbon 98:708–732

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ibrahim, S., Ibraheem, S., Yasin, G., Kumar, A., Tabish, M., Nguyen, T.A. (2022). Carbon Nanotubes: General Introduction. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics