Skip to main content

The Alpha-Procedure as an Inductive Approach to Pattern Recognition and Its Connection with Lorentz Transformation

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing II (CSIT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 689))

Included in the following conference series:

Abstract

The paper deals with problems which appear when solving the task of pattern recognition in a feature space that is not identical with the space of the unknown decisive key features. In a common sense it deals with the correctness of solutions which are found in different coordinate systems. Even more, the opportunity of constructing a feature space for the final separation of classes by selecting the features in pairs, how it is done by the Alpha-procedure, will be investigated. Thereby, the problem of stability during the solving of pattern recognition tasks will be considered from the point of view of transformation groups. The possibility of avoiding the necessity of regularization by using the geometric equiaffine Lorentz transformation will be shown, exploiting for that aim as example the alpha-procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, New York (1962)

    Google Scholar 

  2. Novikoff, A.: On convergence proofs for perceptrons. In: Proceedings of Symposium on Mathematical Theory of Automata (XII). Polytechnic Institute of Brooklyn (1963)

    Google Scholar 

  3. Ivakhnenko, A.G.: Recognizing system “Alpha” as predicting learning filter and extremum controller without searching oscillations. Automatics 4, 17–24 (1966)

    Google Scholar 

  4. Vassilev, V.I., Ivakhnenko, A.G., Reyzkii, V.E.: Algorithm of a recognizing system of perceptron type with a correlator at the input. Automatics 1, 20–35 (1966). (in Russian)

    Google Scholar 

  5. Vassilev, V.I., Ivakhnenko, A.G., Reyzkii, V.E.: Recognition of moving bodies. Automatics 6, 47–52 (1967). (in Russian)

    Google Scholar 

  6. Ivakhnenko, A.G.: Self-learning systems of recognition and of automatic control. Tekhnika, Kyiv (1969). (in Russian)

    Google Scholar 

  7. Vassilev, V.I.: Recognizing systems. Naukova Dumka, Kyiv (1969). (in Russian)

    Google Scholar 

  8. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: The method of potential functions in the theory of machine learning. Nauka, Moscow (1970). (in Russian)

    Google Scholar 

  9. Bock, H.H.: Automatische Klassifikation. Vandenhoeck & Ruprecht, Göttingen (1974)

    Google Scholar 

  10. Vapnik, V., Chervonenkis, A.Y.: The Theory of Pattern Recognition. Nauka, Moscow (1974)

    Google Scholar 

  11. Vassilev, V.I.: The reduction principle in pattern recognition learning (PRL) problem. Pattern Recogn. Image Anal. 1(1), 23–32 (1991)

    Google Scholar 

  12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  13. Vassilev, V.I., Lange, T.: The principle of duality within the training problem during pattern recognition (in Russian). Cybern. Comput. Eng. 121, 7–16 (1998)

    Google Scholar 

  14. Vassilev, V.I., Lange, T., Baranoff, A.E.: Interpretation of diffuse terms. In: Proceedings of the VIII, International Conference KDS 1999, pp. 183–187, Kaziveli, Krimea, Ukraine (1999). (in Russian)

    Google Scholar 

  15. Vassilev, V.I., Lange, T.: Reduction theory for identification tasks. In: Proceedings of International Conference on Control, Automatics-2000, pp. 49–53, Lviv (2000). (in Russian)

    Google Scholar 

  16. Vassilev, V.I., Lange, T.: The mutual supplementability of the Group Method of Data Handling (GMDH) and the Method of Extreme Simplifications (MES). In: Proceedings of International Conference on Inductive Modelling ICIM-2002, Lviv, vol. 1, pp. 68–71 (2002). (in Russian)

    Google Scholar 

  17. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)

    Google Scholar 

  18. Lange, T., Mosler, K., Mozharovskyi, P.: Fast nonparametric classification based on data depth. Stat. Papers 55, 49–69 (2014). Springer

    Article  MathSciNet  Google Scholar 

  19. Hennig, C.: How many bee species? A case study in determining the number of clusters. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine Learning and Knowledge Discovery, pp. 41–49. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Lange, T., Mozharovskyi, P.: The alpha-procedure: a nonparametric invariant method for automatic classification of multi-dimensional objects. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine Learning and Knowledge Discovery, pp. 79–86. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Lange, T., Mosler, K., Mozharovskyi, P.: DDα-classification of asymmetric and fat-tailed data. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine Learning and Knowledge Discovery, pp. 71–78. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Mozharovskyi, P., Mosler, K., Lange, T.: Classifying real-world data with the DDα-procedure. Adv. Data Anal. Classif. 9(3), 287–314 (2015)

    Article  MathSciNet  Google Scholar 

  23. Pokotylo, O., Mozharovskyi, P., Dyckerhoff, R.: Depth-Based Classification and Calculation of Data Depth. R package version 1.2.1, ddalpha. https://cran.r-project.org/web/packages/ddalpha/index.html. Accessed 05 June 2017

  24. Ivakhnenko, A.G.: Long-Term Prediction and Control of Complex Systems. Tekhnika, Kyiv (1975). (in Russian)

    Google Scholar 

  25. Ivakhnenko, A.G.: An Inductive Method of Self-Organization of Models of Complex Systems. Naukova Dumka, Kyiv (1982). (in Russian)

    Google Scholar 

  26. Farlow, S.J. (ed.): Self-Organizing Methods in Modelling. GMDH type Algorithms. Marcel Dekker Inc., New York and Basel (1984)

    Google Scholar 

  27. Ivakhnenko, A.G., Stepashko, V.S.: Noise-Immunity of Modelling. Naukova Dumka, Kyiv (1985). (in Russian)

    Google Scholar 

  28. Akaike, H.: Experiences on development of time series models. In: Bozdogan, H. (ed.) Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Information Approach, vol. 1, pp. 33–42. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  29. Lange, T.: New structure criteria in GMDH. In: Bozdogan, H. (ed.) Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Information Approach, vol. 3, pp. 249–266. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  30. Stepashko, V.S.: Method of critical variances as analytical tool of theory of inductive modeling. J. Autom. Inf. Sci. 40(3), 4–22 (2008)

    Article  MathSciNet  Google Scholar 

  31. Poincaré, H.: Les methods nouvelles de la mecanique celeste. Gauthier-Villars, Paris (1899)

    Google Scholar 

  32. Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Nauka, Moscow (1969). (in Russian)

    Google Scholar 

  33. Cartan, E.: Leçons sur les invariants intégraux. Editions Hermann, Paris (1971)

    Google Scholar 

  34. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Bull. Univ. Princeton 13, 49–52 (1902). Princeton

    MathSciNet  Google Scholar 

  35. Tikhonov, A.N., Arsenin, V.Y.: Methods of Solving Incorrect Tasks. Nauka, Moscow (1974). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lange, T. (2018). The Alpha-Procedure as an Inductive Approach to Pattern Recognition and Its Connection with Lorentz Transformation. In: Shakhovska, N., Stepashko, V. (eds) Advances in Intelligent Systems and Computing II. CSIT 2017. Advances in Intelligent Systems and Computing, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-70581-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70581-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70580-4

  • Online ISBN: 978-3-319-70581-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics