Skip to main content

Optimal Design of Disks Under Large Creep Deformation

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

  • 1372 Accesses

Abstract

Optimal distribution of thickness in the class of polynomial functions for rotating axisymmetric disks with respect to the mixed creep rupture time are found. Two effects lead to damage: reduction of transversal dimensions and growth of micro-cracks are simultaneously taken into account. The former requires the finite strain analysis, the latter is described by the Kachanov’s evolution equation. Behaviour of the material is described by nonlinear Norton’s law, generalized for Cauchy true stress and logarithmic strain, and the shape change law in the form of similarity of Cauchy true stress and logarithmic strain deviators. For optimal shapes, changes of geometry of the disk and continuity function are presented. The theoretical considerations based on the perception of the structural components as some highlighted objects with defined properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betten, J.: Mathematical modelling of materials behaviour under creep conditions. Appl. Mech. Rev. 54(2), 107–132 (2001)

    Article  Google Scholar 

  2. Castillo-Rodríguez, M., Nó, M.L., Jiménez, J.A., Ruano, O.A., San, Juan J.: High temperature internal friction in a Ti-46Al-1Mo-0.2Si intermetallic, comparison to creep behaviour. Acta Mater. 103, 46–56 (2016)

    Article  Google Scholar 

  3. Çğallioğlu, H., Topcu, M., Tarakcilar, A.R.: Elastic-plastic stress analysis on orthotropic rotating disc. Int. J. Mech. Sci. 48, 985–990 (2006)

    Article  MATH  Google Scholar 

  4. Dems, K., Mróz, Z.: Shape sensitivity analysis and optimal design of disks and plates with strong discontinuities of kinematic fields. Int. J. Solids Struct. 29(4), 437–463 (1992)

    Article  MATH  Google Scholar 

  5. Dorn, J.E.: Some fundamental experiments on high temperature creep. J. Mech. Phys. Solids 3(2), 85 (1955)

    Article  Google Scholar 

  6. Eraslan, A.N.: Elastic-plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int. J. Mech. Sci. 45(4), 643–667 (2003)

    Article  MATH  Google Scholar 

  7. Eraslan, A.N., Orcan, Y.: Elastic-plastic deformation of a rotating solid disk of exponentially varying thickness. Mech. Mater. 34, 423–432 (2002)

    Google Scholar 

  8. Eraslan, A.N., Orcan, Y.: On the rotating elastic-plastic solid disks of variable thickness having concave profiles. Int. J. Mech. Sci. 44, 1445–1466 (2002)

    Google Scholar 

  9. Farshi, B., Bidabadi, J.: Optimum design of inhomogeneous rotating discs under secondary creep. Int. J. Press. Vessels Pip. 85, 507–515 (2008)

    Article  Google Scholar 

  10. Gamer, U.: Elastic-plastic deformation of the rotating solid disk. Ingenieur-Arch. 54, 345–354 (1984)

    Article  MATH  Google Scholar 

  11. Ganczarski, A., Skrzypek, J.: Optimal shape of prestressed disks in creep. J. Struct. Mech. 2, 141–160 (1976)

    Google Scholar 

  12. Golub, V.P.: Derivation of creep long-term fracture criteria under plane state of stress. Int. J. Mech. Sci. 47(12), 1807–1826 (2005)

    Article  MATH  Google Scholar 

  13. Golub, V.P., Teteruk, R.G.: Evaluating the time to ductile fracture under creep conditions. Int. Appl. Mech. 30(11), 898–905 (1994)

    Article  Google Scholar 

  14. Golub, V.P., Romanov, A.V., Romanova, N.V.: Nonlinear creep and ductile creep rupture of perfectly elastoplastic rods under tension. Int. Appl. Mech. 44(4), 459–470 (2008)

    Article  Google Scholar 

  15. Grabovsky, Y.: Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math. 27, 683–704 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gun, H.: Two-dimensional boundary element analysis of creep continuum damage problems with plastic effects. Comput. Mater. Sci. 41(3), 322–329 (2008)

    Article  Google Scholar 

  17. Gunneskov, O.: Optimal design of rotating disks in creep. J. Struct. Mech. 4(2), 141–160 (1976)

    Article  Google Scholar 

  18. Guven, U.: Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density. Int. J. Mech. Sci. 34, 133–8 (1992)

    Article  MATH  Google Scholar 

  19. Hayhurst, D.R.: Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20, 381–390 (1972)

    Article  Google Scholar 

  20. Hoff, N.J.: The necking and rupture of rods subjected to constant tensile loads. J. Appl. Mech. Trans. ASME 20, 105–112 (1953)

    Google Scholar 

  21. Jahed, H., Farshi, B., Bidabadi, J.: Minimum weight design of inhomogeneous rotating discs. Int. J. Press. Vessels Pip. 82, 35–41 (2005)

    Article  Google Scholar 

  22. Jiang, L.: Optimal design of equipment for al in-situ composites fabricated by reaction synthesis. In: International Conference on Measuring Technology and Mechatronics Automation, vol. 2, pp. 832–836 (2010)

    Google Scholar 

  23. Kachanov, L.M.: Creep Theory. Fizmatgiz, Moskwa (1960)

    Google Scholar 

  24. Kastenhuber, M., Rashkova, B., Clemens, H., Mayer, S.: Effect of microstructural instability on the creep resistance of an advanced intermetallic g-TiAl based alloy. Intermetallics 80, 1–9 (2017)

    Article  Google Scholar 

  25. Kordkheili, S.A.H., Naghdabadi, R.: Thermoelastic analysis of a functionally graded rotating disk. Compos. Struct. 79(4), 508–516 (2007)

    Article  MATH  Google Scholar 

  26. Kou, X.Y., Parks, G.T., Tan, S.T.: Optimal design of functionally graded materials using a procedural model and particle swarm optimisation. Comput. Aided Design 44(4), 300–310 (2012)

    Article  Google Scholar 

  27. Kowalewski, Z.L., Mackiewicz, S., Szelżek, J., Pietrzak, K., Augustyniak, B.: Evaluation of damage in steels subjected to prior deformation - destructive and nondestructive techniques. J. Multiscale Model. 479–499 (2009)

    Google Scholar 

  28. Lin, J., Kowalewski, Z.L., Cao, J.: Creep rupture of copper and aluminum alloy under combined loadings - experiments and their various descriptions. Int. J. Mech. Sci. 47, 1038–1058 (2005)

    Article  Google Scholar 

  29. Martin, J.B., Leckie, F.A.: On the creep rupture of structures. J. Mech. Phys. Solids 20, 223–238 (1972)

    Google Scholar 

  30. Mentl, V.: An application of a phenomenological theory of creep damage. Mater. High Temp. 23, 195–200 (2006)

    Article  Google Scholar 

  31. Orcan, Y., Eraslan, A.N.: Elastic-plastic stresses in linearly hardening rotating solid disks of variable thickness. Mech. Res. Commun. 29, 269–281 (2002)

    Article  MATH  Google Scholar 

  32. Pedersen, P.: On optimal shapes in materials and structures. Struct. Multidisc. Optim. 19, 169–182 (2000)

    Article  Google Scholar 

  33. Pedersen, P.: On the influence of boundary conditions, Poisson’s ratio and material non-linearity on the optimal shape. Int. J. Solids Struct. 38(3), 465–477 (2001)

    Article  MATH  Google Scholar 

  34. Rysz, M.: Optimal design of a thick-walled pipeline cross-section against creep rupture. Acta Mech. 1(4), 83–102 (1987)

    Article  MATH  Google Scholar 

  35. Shimanovskii, A.V., Shalinskii, V.V.: Physically and geometrically nonlinear deformation of bars: numerical analytic problem-solving. Int. Appl. Mech. 45(5), 572–577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Szuwalski, K.: Optimal design of bars under nonuniform tension with respect to ductile creep rupture. Mech. Struct. Mach. 3, 303–319 (1989)

    Article  Google Scholar 

  37. Szuwalski, K.: Nohomogeneous bars optimal with respect to ductile creep rupture. Eng. Opt. 25, 54–60 (1995)

    Article  Google Scholar 

  38. Szuwalski, K., Ustrzycka, A.: Optimal design of bars under nonuniform tension with respect to mixed creep rupture time. Int. J. Non-Linear Mech. 47, 55–60 (2012)

    Article  Google Scholar 

  39. Szuwalski, K., Ustrzycka, A.: The influence of boundary conditions on optimal shape of annular disk with respect to ductile creep rupture time. Eur. J. Mech. A-Solids 37, 79–85 (2013)

    Google Scholar 

  40. Szuwalski, K., Ustrzycka, A.: Optimal design of full disks with respect to mixed creep rupture time. Eng. Struct. 20, 1728–1734 (2013)

    Google Scholar 

  41. Szuwalski, K., Ustrzycka, A.: Mathematical and numerical modelling of large creep deformations for annular rotating disks. Appl. Math. Mech. Engl. Ed. 36, 1441–1448 (2015)

    Article  MathSciNet  Google Scholar 

  42. Vivio, F., Vullo, V.: Elastic stress analysis of rotating converging conical disks subjected to thermal load and having variable density along the radius. Int. J. Solids Struct. 44(24), 7767–7784 (2007)

    Article  MATH  Google Scholar 

  43. Vivio, F., Vullo, L.: Elastic-plastic analysis of rotating disks having non-linearly variable thickness: residual stresses by overspeeding and service stress state reduction. Ann. Solid Struct. Mech. 1(2), 87–102 (2010)

    Article  Google Scholar 

  44. Zenkour, A.M.: Elastic deformation of the rotating functionally graded annular disk with rigid casing. J. Mater. Sci. 43(23), 9717–9724 (2007)

    Article  Google Scholar 

  45. Życzkowski, M.: Optimal structural design in rheology. J. Appl. Mech. 38(1), 39–46 (1971)

    Article  Google Scholar 

  46. Życzkowski, M.: Optimal structural design under creep conditions. Appl. Mech. Rev. 12, 453–461 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew L. Kowalewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ustrzycka, A., Szuwalski, K., Kowalewski, Z.L. (2018). Optimal Design of Disks Under Large Creep Deformation. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics