Skip to main content

The Involvement of 5-HT2A Receptor in the Regulation of Sleep and Wakefulness, and the Potential Therapeutic Use of Selective 5-HT2A Receptor Antagonists and Inverse Agonists for the Treatment of an Insomnia Disorder

  • Chapter
  • First Online:
5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

Abstract

Several agents have been shown to improve sleep induction and/or maintenance in patients with primary or comorbid insomnia. These include benzodiazepine and non-benzodiazepine receptor allosteric modulators, melatonin and the melatonin receptor agonist ramelteon, low dose doxepin, and suvorexant. However, benzodiazepines induce a further reduction of N3 sleep [slow wave sleep (SWS) or delta sleep] and rapid-eye-movement sleep (REMS), whereas values corresponding to these variables remain decreased during non-benzodiazepine, melatonin, ramelteon or low-dose doxepin administration. By contrast, suvorexant increases REMS. There is evidence indicating that non-selective (ritanserin, ketanserin, sertindole, ICI-170809, ICI-169369, RP-62203, SR-46349B) and selective (volinanserin, pruvanserin, eplivanserin) 5-HT2A receptor antagonists, as well as 5-HT2A receptor inverse agonists (nelotanserin, pimavanserin) increase SWS in laboratory animals and N3 sleep in subjects with normal sleep and/or patients with an insomnia disorder. Thus, the association of a selective 5-HT2A receptor antagonist or a 5-HT2A receptor inverse agonist with a hypnotic drug could be a valid alternative to normalize N3 sleep in patients with an insomnia complaint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

BFB:

Basal forebrain

BZD:

Benzodiazepine

CNS:

Central nervous system

DRN:

Dorsal raphe nucleus

EEG:

Electroencephalogram

EMG:

Electromyogram

EOG:

Electro-oculogram

GABA:

γ-Aminobutyric acid

GAD:

Generalized anxiety disorder

LC:

Locus coeruleus

LDT:

Laterodorsal tegmental nucleus

LS:

Light sleep

MRN:

Median raphe nucleus

NREM:

Non-rapid-eye movement

PPT:

Pedunculopontine tegmental nucleus

REM:

Rapid-eye-movement

SE:

Sleep efficiency

SNc:

Substantia nigra pars compacta

SOL:

Sleep onset latency

SWS:

Slow wave sleep

TST:

Total sleep time

vPAG:

Ventral periaqueductal gray matter

VTA:

Ventral tegmental area

W:

Wakefulness

WASO:

Wake time after sleep onset

References

  1. Dement W, Kleitman N (1957) Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690

    Article  CAS  PubMed  Google Scholar 

  2. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. National Institute of Health Publ, Washington, DC. Government Printing Office 204

    Google Scholar 

  3. Adam K, Oswald I (1983) Protein synthesis, bodily renewal and the sleep-wake cycle. Clin Sci (Lond) 65:561–567

    Article  CAS  Google Scholar 

  4. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  5. Bellesi M, Riedner BA, Garcia-Molina GN et al (2014) Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front Syst Neurosci 8:208

    Article  PubMed  PubMed Central  Google Scholar 

  6. Whitlock JR, Heynen AJ, Shuler MG (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  7. Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolic clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  8. Achermann P, Borbely AA (2003) Mathematical models of sleep regulation. Front Biosci 8:s683–s693

    Article  PubMed  Google Scholar 

  9. Monti JM, Orellana C, Boussard M et al (1990) 5-HT receptor agonists 1-(2,5-methoxy-4-iodophenyl)-2-aminopro- pane (DOI) and 8-OH-DPAT increase wakefulness in the rat. Biogen Amines 7:145–151

    CAS  Google Scholar 

  10. ICSD 2 (2005) International Classification of Sleep Disorders: Diagnostic and Coding Manual, 2nd edn. American Academy of Sleep Medicine, Westchester, IL

    Google Scholar 

  11. Kales A, Kales JD (1984) Evaluation and treatment of insomnia. Oxford University Press, New York

    Google Scholar 

  12. Monti JM (1981) Sleep laboratory and clinical studies of the effects of triazolam, flunitrazepam and flurazepam in insomniac patients. Methods Find Exp Clin Pharmacol 3:303–326

    CAS  PubMed  Google Scholar 

  13. Greenblatt DJ (1991) Benzodiazepine hypnotics: sorting the pharmacokinetic facts. J Clin Psychiatry 52(Suppl):4–10

    PubMed  Google Scholar 

  14. Monti JM, Pandi-Perumal SR, Langer SZ (2008) Zolpidem: its use in the treatment of sleep disorders. In: Pandi-Perumal SR, Verster JC, Monti JM, Langer SZ (eds) Sleep disorders—diagnosis and therapeutics. Informa Healthcare, London, pp 295–323

    Google Scholar 

  15. Krystal AD, Erman M, Zammit G et al (2008) Long-term efficacy and safety of zolpidem extended-release 12.5 mg, administered 3 to 7 nights per week for 24 weeks, in patients with chronic primary insomnia: a 6-month, randomized, double-blind, placebo-controlled, parallel-group, multicenter study. Sleep 31:79–90

    Article  PubMed  PubMed Central  Google Scholar 

  16. Monti JM, Spence DW, Pandi-Perumal SR et al (2009) Pharmacotherapy of insomnia. Focus on zolpidem extended release. Clin Med Therap 1:123–140

    Article  CAS  Google Scholar 

  17. Dolder CR, Nelson MH (2008) Hypnosedative-induced complex behaviors: incidence, mechanisms and management. CNS Drugs 22:1021–1036

    Article  CAS  PubMed  Google Scholar 

  18. Roehrs TA, Randall S, Harris E et al (2012) Twelve months of nightly zolpidem does not lead to rebound insomnia or withdrawal symptoms: a prospective placebo-controlled study. J Psychopharmacol 26:1088–1095

    Article  CAS  PubMed  Google Scholar 

  19. McCall WV, Erman M, Krystal AD et al (2006) A polysomnographic study of eszopiclone in elderly patients with insomnia. Curr Med Res Opin 22:1633–1642

    Article  CAS  PubMed  Google Scholar 

  20. Scharf M (1999) A new option for insomnia. Health News 5:4

    Google Scholar 

  21. Walsh JK, Vogel GW, Scharf M et al (2000) A five week, polysomnographic assessment of zaleplon 10 mg for the treatment of primary insomnia. Sleep Med 1:41–49

    Article  CAS  PubMed  Google Scholar 

  22. Zammit G, Erman M, Wang-Weigand S et al (2007) Evaluation of the efficacy and safety of ramelteon in subjects with chronic insomnia. J Clin Sleep Med 3:495–504

    PubMed  PubMed Central  Google Scholar 

  23. Krystal AD, Lankford A, Durrence HH (2011) Efficacy and safety of doxepin 3 mg and 6 mg in a 35-day sleep laboratory trial in adults with chronic primary insomnia. Sleep 34:1433–1434

    PubMed  PubMed Central  Google Scholar 

  24. Patel KV, Aspesi AV, Evoy KE (2015) Suvorexant: a dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia. Ann Pharmacother 49:477–483

    Article  CAS  PubMed  Google Scholar 

  25. Berridge CW, Schmeichel BE, España RA (2012) Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev 16:187–197

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brown RE, Basheer R, McKenna JT et al (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15:269–281

    Article  PubMed  Google Scholar 

  28. Thakkar MM (2011) Histamine in the regulation of wakefulness. Sleep Med Rev 15:65–74

    Article  PubMed  Google Scholar 

  29. Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8:291–301

    Article  PubMed  Google Scholar 

  30. Reinoso-Suárez F, de Andrés I, Rodrigo-Angulo ML et al (2001) Brain structures and mechanisms involved in the generation of REM sleep. Sleep Med Rev 5:63–77

    Article  PubMed  Google Scholar 

  31. Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17:293–298

    Article  PubMed  Google Scholar 

  32. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkäuser Verlag, Basel, pp 155–182

    Google Scholar 

  33. Cornea-Hébert V, Riad M, Wu C (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    Article  PubMed  Google Scholar 

  34. Popa D, Lena C, Favre V et al (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25:11231–11238

    Article  CAS  PubMed  Google Scholar 

  35. Adrien J (2008) Sleep and waking in mutant mice that do not express various proteins involved in serotonergic neurotransmission such as the serotonergic transporter, monoamine oxidase A, and the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C and 5-HT7 receptors. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkäuser Verlag, Basel, pp 457–475

    Google Scholar 

  36. Done CJ, Sharp T (1994) Biochemical evidence for the regulation of central noradrenergic activity by 5-HT1A and 5-HT2 receptors: microdyalisis studies in the awake and anaesthetized rat. Neuropharmacology 33:411–421

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt CJ, Fadayel GM (1995) The selective 5-HT2A receptor antagonist MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat. Eur J Pharmacol 273:273–279

    Article  CAS  PubMed  Google Scholar 

  38. Quesseveur G, Repérant C, David DJ, Gardier AM, Sanchez C, Guiard BP (2013) 5-HT2A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: involvement of the noradrenergic system. Exp Brain Res 226:285–295

    Article  CAS  PubMed  Google Scholar 

  39. Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417

    Article  CAS  PubMed  Google Scholar 

  40. Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511

    Article  CAS  PubMed  Google Scholar 

  41. Shannon M, Battaglia G, Glennon RA et al (1984) 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur J Pharmacol 102:23

    Article  CAS  PubMed  Google Scholar 

  42. Dugovic C, Wauquier A, Leysen JE et al (1989) Functional role of 5-HT2 receptors in the regulation of sleep and wakefulness in the rat. Psychopharmacology 97:436–442

    Article  CAS  PubMed  Google Scholar 

  43. Jäkälä P, Sirviö J, Koivisto E et al (1995) Modulation of rat neocortical high-voltage spindle activity by 5-HT1/5-HT2 receptor subtype specific drugs. Eur J Pharmacol 282:39–55

    Article  PubMed  Google Scholar 

  44. Monti JM, Jantos H (2006) Effects of the serotonin 5-HT2A/2C receptor agonist DOI and of the selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat. Eur J Pharmacol 553:163–170

    Article  CAS  PubMed  Google Scholar 

  45. Boothman LJ, Allers KA, Rasmussen K et al (2003) Evidence that central 5-HT2A and 5-HT2B/C receptors regulate 5-HT cell firing in the dorsal raphe nucleus of the anaesthetised rat. Br J Pharmacol 139:998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garratt JC, Kidd EJ, Wright IK et al (1984) Inhibition of 5-hydroxytryptamine neuronal activity by the 5-HT agonist. Eur J Pharmacol 199:349–355

    Article  Google Scholar 

  47. Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873:34–45

    Article  CAS  PubMed  Google Scholar 

  48. Boothman LJ, Sharp T (2005) A role for midbrain raphe gamma aminobutyric acid neurons in 5-hydroxytryptamine feedback control. Neuroreport 16:891–896

    Article  CAS  PubMed  Google Scholar 

  49. Ford B, Holmes CJ, Mainville L et al (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196

    Article  CAS  PubMed  Google Scholar 

  50. Vasudeva RK, Waterhouse BD (2014) Cellular profile of the dorsal raphe lateral wing subregion: relationship to the lateral dorsal tegmental nucleus. J Chem Neuroanat 58:15–23

    Article  Google Scholar 

  51. Amici R, Sanford LD, Kearney K et al (2004) A serotonergic (5-HT2) receptor mechanism in the laterodorsal tegmental nucleus participates in regulating the pattern of rapid-eye-movement occurrence in the rat. Brain Res 996:9–18

    Article  CAS  PubMed  Google Scholar 

  52. Rodrigo-Angulo ML, Heredero S, Rodríguez-Veiga E et al (2008) GABAergic and non-GABAergic, thalamic, hypothalamic and basal forebrain projections to the oral pontine reticular nucleus: their implication in REM sleep regulation. Brain Res 1210:116–125

    Article  CAS  PubMed  Google Scholar 

  53. Vertes RP, Kocsis B (1994) Projections of the dorsal raphe nucleus to the brainstem: PHA-L analysis of the rat. J Comp Neurol 340:11–26

    Article  CAS  PubMed  Google Scholar 

  54. Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358

    Article  PubMed  Google Scholar 

  55. Kirov R, Moyanova S (1998) Age-dependent effect of ketanserin on the sleep-waking phases in rats. Int J Neurosci 93:257–264

    Article  CAS  PubMed  Google Scholar 

  56. Moyanova S, Kortenska L, Kirov R (1998) High-voltage electroencephalogram spindles in rats, aging and 5-HT2 antagonism. Brain Res 786:55–63

    Article  CAS  PubMed  Google Scholar 

  57. Silhol S, Glin L, Gottesmann C (1991) Study of the 5-HT2 antagonist ritanserin on sleep-waking cycle in the rat. Physiol Behav 41:241–243

    Article  Google Scholar 

  58. Kantor S, Jakus R, Bodizs R et al (2002) Acute and long-term effects of the 5-HT2 receptor antagonist ritanserin on EEG power spectra, motor activity and sleep: changes at the light-dark phase shift. Brain Res 943:105–111

    Article  CAS  PubMed  Google Scholar 

  59. Tortella FC, Echevarria E, Pastel RH et al (1989) Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats. Brain Res 485:294–300

    Article  CAS  PubMed  Google Scholar 

  60. Stutzmann JM, Eon B, Lucas M (1992) RP 62203, a 5-hydroxytryptamine2 antagonist, enhances deep NREM sleep in rats. Sleep 15:119–124

    Article  CAS  PubMed  Google Scholar 

  61. Coenen AML, Ates N, Skarsfeldt T et al (1995) Effects of sertindole on sleep-wake states, electroencephalogram, behavioral patterns, and epileptic activity of rats. Pharmacol Biochem Behav 51:353–357

    Article  CAS  PubMed  Google Scholar 

  62. Idzikowski C, Mills FJ, Glennard R (1986) 5-Hydroxytryptamine-2-antagonist ritanserin increases human slow wave sleep. Brain Res 378:164–168

    Article  CAS  PubMed  Google Scholar 

  63. Idzikowski C, Cowen PJ, Mills FJ (1987) The effect of chronic ritanserin treatment on sleep and on the neuroendocrine response to L-tryptophan. Psychopharmacology 93:416–420

    Article  CAS  PubMed  Google Scholar 

  64. Idzikowski C, Mills FJ, James RJ (1991) A dose-response study examining the effects of ritanserin on human slow wave sleep. Br J Pharmacol 31:193–196

    Article  CAS  Google Scholar 

  65. Kamali F, Stanfield SC, Ashton CH et al (1992) Absence of withdrawal effects of ritanserin following chronic dosing in healthy volunteers. Psychopharmacology 108:213–217

    Article  CAS  PubMed  Google Scholar 

  66. Sharpley AL, Elliott JM, Attenburrow MJ (1994) Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors. Neuropharmacology 33:467–471

    Article  CAS  PubMed  Google Scholar 

  67. Sharpley AL, Solomon RA, Fernando AI (1990) Dose-related effects of selective 5-HT2 receptor antagonists on slow wave sleep in humans. Psychopharmacology 101:568–569

    Article  CAS  PubMed  Google Scholar 

  68. Landolt HP, Viola M, Burgess HJ et al (1999) Serotonin-2 receptors and human sleep: effect of a selective antagonist on EEG power spectra. Neuropsychopharmacology 21:455–466

    Article  CAS  PubMed  Google Scholar 

  69. Adam K, Oswald I (1989) Effects of repeated ritanserin on middle-aged poor sleepers. Psychopharmacology 99:219–221

    Article  CAS  PubMed  Google Scholar 

  70. Ruiz-Primo E, Haro R, Valencia M (1989) Polysomnographic effects of ritanserin in insomniacs. A crossed double-blind controlled study. Sleep Res 18:72

    Google Scholar 

  71. Monti JM, Alterwain P, Estévez F et al (1993) The effects of ritanserin on mood and sleep in abstinent alcoholic patients. Sleep 16:647–654

    Article  CAS  PubMed  Google Scholar 

  72. da Roza Davis JM, Sharpley AL, Cowen PJ (1992) Slow wave sleep and 5-HT2 receptor sensitivity in generalized anxiety disorder. Psychopharmacology 108:387–389

    Article  PubMed  Google Scholar 

  73. Paiva T, Arriaga F, Wauquier A et al (1988) Effects of ritanserin on sleep disturbances of dysthymic patients. Psychopharmacology 96:395–399

    Article  CAS  PubMed  Google Scholar 

  74. Staner L, Kempenaers C, Simonnet MP (1992) 5-HT2 receptor antagonism and slow-wave sleep in major depression. Acta Psychiatr Scand 86:133–137

    Article  CAS  PubMed  Google Scholar 

  75. Kehne JH, Baron BM, Carr AA et al (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther 277:968–981

    CAS  PubMed  Google Scholar 

  76. Bartoszyk GD, van Amsterdam C, Böttcher H (2003) EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur J Pharmacol 473:229–230

    Article  CAS  PubMed  Google Scholar 

  77. Morairty SR, Hedley L, Flores J et al (2008) Selective 5-HT2A and 5-HT6 receptor antagonists promote sleep in rats. Sleep 31:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hasegawa S, Fikre-Merid M, Diksic M (2012) 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: an autoradiographic study. Brain Res Bull 87:44–49

    Article  CAS  PubMed  Google Scholar 

  79. Monti JM, Jantos H (2011) Effects of the 5-HT6 receptor antagonists SB-399885 and RO-4368554 and of the 5-HT2A receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle. Behav Brain Res 216:381–388

    Article  CAS  PubMed  Google Scholar 

  80. Rinaldi-Carmona M, Congy C, Santucci V et al (1992) Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 262:759–768

    CAS  PubMed  Google Scholar 

  81. Rinaldi-Carmona M, Congy C, Pointeau P et al (1994) Identification of binding sites for SR 463449B, a 5-hydroxytryptamine2 receptor antagonist, in rodent brain. Life Sci 54:119–127

    Article  CAS  PubMed  Google Scholar 

  82. Griebel G, Beeské S, Jacquet A et al (2013) Further evidence for the sleep-promoting effects of 5-HT2A receptor antagonists and demonstration of synergistic effects with the hypnotic zolpidem in rats. Neuropharmacology 70:19–26

    Article  CAS  PubMed  Google Scholar 

  83. Al-Shamma HA, Anderson C, Chuang E et al (2010) Nelotanserin, a novel selective human 5-hydroxytryptamine2A inverse agonist for the treatment of insomnia. J Pharmacol Exp Ther 322:281–290

    Article  Google Scholar 

  84. Teegarden BR, Li H, Jayakumar H, Strah-Pleynet S, Dosa PI, Selaya SD et al (2010) Discovery of 1-[3-(4-Bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxyphenyl]-3-(2,4-difluorophenyl)urea (Nelotanserin) and related 5-hydroxytryptamine2A inverse agonists for the treatment of insomnia. J Med Chem 53:1923–1936

    Article  CAS  PubMed  Google Scholar 

  85. Vanover KE, Weiner DM, Makhay M et al (2006) Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N’-4-(2-methylpropylo-xymethyl) carbamide (2R,3R)-dihydroxybu- tanedionate (2,1) (ACP-103), a novel 5-hydroxytryotamine(2A) receptor inverse agonist. L Pharmacol Exp Ther 317:910–918

    Article  CAS  Google Scholar 

  86. Rosenberg R, Seiden DJ, Hull SG et al (2008) APD125, a selective serotonin 5-HT2A receptor inverse agonist, significantly improves sleep maintenance in primary insomnia. Sleep 31:1663–1671

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ancoli-Israel S, Vanover KE, Weiner DM et al (2011) Pimavanserin tartrate, a 5-HT2A receptor inverse agonist, increases slow wave sleep as measured by polysomnography in healthy adult volunteers. Sleep Med 12:134–141

    Article  PubMed  PubMed Central  Google Scholar 

  88. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their functions. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  89. Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3:11–26

    Article  CAS  PubMed  Google Scholar 

  90. Leysen JE, Gommeren W, Schotte A (1996) Serotonin receptor subtypes: possible roles and implications in antipsychotic drug action. In: Kane JM, Möller H-J, Awouters F (eds) Serotonin and antipsychotic treatment. Marcel Dekker, New York, pp 51–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime M. Monti M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monti, J.M., Pandi Perumal, S.R., Warren Spence, D., Torterolo, P. (2018). The Involvement of 5-HT2A Receptor in the Regulation of Sleep and Wakefulness, and the Potential Therapeutic Use of Selective 5-HT2A Receptor Antagonists and Inverse Agonists for the Treatment of an Insomnia Disorder. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_13

Download citation

Publish with us

Policies and ethics