Skip to main content

Is a Memoryless Motion Detection Truly Relevant for Background Generation with LaBGen?

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

Abstract

The stationary background generation problem consists in generating a unique image representing the stationary background of a given video sequence. The LaBGen background generation method combines a pixel-wise median filter and a patch selection mechanism based on a motion detection performed by a background subtraction algorithm. In our previous works related to LaBGen, we have shown that, surprisingly, the frame difference algorithm provides the most effective motion detection on average. Compared to other background subtraction algorithms, it detects motion between two frames without relying on additional past frames, and is therefore memoryless. In this paper, we experimentally check whether the memoryless property is truly relevant for LaBGen, and whether the effective motion detection provided by the frame difference is not an isolated case. For this purpose, we introduce LaBGen-OF, a variant of LaBGen leverages memoryless dense optical flow algorithms for motion detection. Our experiments show that using a memoryless motion detector is an adequate choice for our background generation framework, and that LaBGen-OF outperforms LaBGen on the SBMnet dataset. We further provide an open-source C++ implementation of both methods at http://www.telecom.ulg.ac.be/labgen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://pione.dinf.usherbrooke.ca/sbmc2016.

  2. 2.

    LaBGen, with the set of parameters proposed in [9], runs at a frame rate of more than 1300 fps for a VGA video sequence on a Core i7-4790K.

  3. 3.

    http://sbmi2015.na.icar.cnr.it/SBIdataset.html.

  4. 4.

    http://scenebackgroundmodeling.net.

  5. 5.

    http://opencv.org.

References

  1. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Trans. Graph. 23(3), 294–302 (2004)

    Article  Google Scholar 

  2. Bouguet, J.-Y.: Pyramidal implementation of the affine Lucas Kanade feature tracker description of the algorithm. Intel Corporation 5(1–10), 4 (2001)

    Google Scholar 

  3. Bouwmans, T., Maddalena, L., Petrosino, A.: Scene background initialization: a taxonomy. Pattern Recognition Letters (in press)

    Google Scholar 

  4. De Gregorio, M., Giordano, M.: Background estimation by weightless neural networks. Pattern Recognition Letters (in press)

    Google Scholar 

  5. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  6. Javed, S., Mahmmod, A., Bouwmans, T., Jung, S.K.: Motion-aware graph regularized RPCA for background modeling of complex scene. In: IEEE International Conference on Pattern Recognition (ICPR), IEEE Scene Background Modeling Contest (SBMC), Cancún, Mexico, pp. 120–125, December 2016

    Google Scholar 

  7. Jodoin, P.M., Maddalena, L., Petrosino, A., Wang, Y.: Extensive benchmark and survey of modeling methods for scene background initialization. IEEE Trans. Image Process. 26, 5244–5256 (2017)

    Article  MathSciNet  Google Scholar 

  8. Kroeger, T., Timofte, R., Dai, D., Van Gool, L.J.: Fast optical flow using dense inverse search. CoRR abs/1603.03590 (2016)

    Google Scholar 

  9. Laugraud, B., Piérard, S., Van Droogenbroeck, M.: LaBGen-P: a pixel-level stationary background generation method based on LaBGen. In: IEEE International Conference on Pattern Recognition (ICPR), IEEE Scene Background Modeling Contest (SBMC), Cancún, Mexico, pp. 107–113, December 2016

    Google Scholar 

  10. Laugraud, B., Piérard, S., Van Droogenbroeck, M.: LaBGen: a method based on motion detection for generating the background of a scene. Pattern Recognition Letters (in press)

    Google Scholar 

  11. Maddalena, L., Petrosino, A.: Background model initialization for static cameras. In: Background Modeling and Foreground Detection for Video Surveillance, pp. 3.1–3.16. Chapman and Hall/CRC (2014). Chap. 3

    Google Scholar 

  12. Maddalena, L., Petrosino, A.: Towards benchmarking scene background initialization. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 469–476. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_57

    Chapter  Google Scholar 

  13. Maddalena, L., Petrosino, A.: Extracting a background image by a multi-modal scene background model. In: IEEE International Conference on Pattern Recognition (ICPR), IEEE Scene Background Modeling Contest (SBMC), Cancún, Mexico, pp. 143–148, December 2016

    Google Scholar 

  14. McIvor, A.: Background subtraction techniques. In: Proceedings of the Image and Vision Computing, Auckland, New Zealand, November 2000

    Google Scholar 

  15. Reddy, V., Sanderson, C., Lovell, B.: A low-complexity algorithm for static background estimation from cluttered image sequences in surveillance contexts. EURASIP J. Image Video Process. 13 (2011). https://doi.org/10.1155/2011/164956

  16. Sobral, A., Zahzah, E.H.: Matrix and tensor completion algorithms for background model initialization: a comparative evaluation. Pattern Recognition Letters (in press)

    Google Scholar 

  17. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)

    Article  Google Scholar 

  18. Tao, M.W., Bai, J., Kohli, P., Paris, S.: SimpleFlow: a non-iterative, sublinear optical flow algorithm. Comput. Graph. Forum (Eurograph. 2012) 31(2), 345–353 (2012)

    Article  Google Scholar 

  19. Wang, H., Suter, D.: A novel robust statistical method for background initialization and visual surveillance. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 328–337. Springer, Heidelberg (2006). https://doi.org/10.1007/11612032_34

    Chapter  Google Scholar 

  20. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 1385–1392, December 2013

    Google Scholar 

  21. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-\(L^1\) optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

Download references

Acknowledgments

We are thankful to Pr. Pierre-Marc Jodoin for letting us use the SBMnet web platform to assess some variants of LaBGen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Laugraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laugraud, B., Van Droogenbroeck, M. (2017). Is a Memoryless Motion Detection Truly Relevant for Background Generation with LaBGen?. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics