Skip to main content

Overcoming Service-Level Interoperability Challenges of the IoT

  • Chapter
  • First Online:
Connected Environments for the Internet of Things

Abstract

The Internet of Things (IoT) is a complex ecosystem of devices, solutions, services and applications. IoT is highly heterogeneous because devices focus on proprietary technology and interfaces. To realize its full value, interoperability of ‘things’ becomes an important component of the ecosystem, which must be satisfactorily achieved. At present, however, it is impossible to manage individually a vast amount of different IoT devices and their application programming interfaces (APIs). Interoperability is therefore one of the main problems of the IoT paradigm. Much of the existing IoT interoperability research elaborates on techniques and methods to achieve interoperability. Multiple IoT standards exist today and new ones are being created. Different IoT standards compete; and a generally globally accepted standard does not currently exist. There are, in fact, many unsolved interoperability issues occurring at different levels, including data, service, network and application. This chapter focuses on service-level IoT interoperability problems and solutions. It reviews the use case of possible interoperability resolutions. The chapter also identifies future research problems related to IoT service-level interoperability .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. IEEE (1991) IEEE Standard computer dictionary: a compilation of IEEE standard computer glossaries. New York

    Google Scholar 

  2. Brownsword LL, Carney DJ, Fisher D, et al (2004) Current perspectives on interoperability, pp 1–51

    Google Scholar 

  3. Pokraev S, Quartel D, Steen MWA, Reichert M (2007) Semantic service modeling: enabling system interoperability. In: Doumeingts G, Müller J, Morel G, Vallespir B (eds) Enterprise Interoperability. Springer, London, pp 221–230

    Chapter  Google Scholar 

  4. Vernadat F (1996) Enterprise modeling and integration: principles and applications. Chapman & Hall, London/New York

    Google Scholar 

  5. Park J, Ram S (2004) Information systems interoperability. ACM Trans Inf Syst 22:595–632. https://doi.org/10.1145/1028099.1028103

    Article  Google Scholar 

  6. Loutas N, Kamateri E, Tarabanis K, D’Andria F (2011) D 1.2 Cloud4SOA cloud semantic interoperability framework

    Google Scholar 

  7. Naudet Y, Latour T, Guedria W, Chen D (2010) Towards a systemic formalisation of interoperability. Comput Ind 61:176–185. https://doi.org/10.1016/j.compind.2009.10.014

    Article  Google Scholar 

  8. Kominers P (2012) Interoperability case study: internet of things (IoT), p 19

    Google Scholar 

  9. Soldatos J, Kefalakis N, Hauswirth M et al (2015) OpenIoT: open source internet-of-things in the cloud. In: Podnar Žarko I, Pripužić K, Serrano M (eds) Interoperability open-source solution internet things. Springer International Publishing, Cham, pp 13–25

    Google Scholar 

  10. De S, Carrez F, Reetz E et al (2013) Test-enabled architecture for IoT service creation and provisioning. In: Galis A, Gavras A (eds) Future internet. Springer, Berlin/Heidelberg, pp 233–245

    Chapter  Google Scholar 

  11. Gusmeroli S, Piccione S, Rotondi D (2012) IoT@Work automation middleware system design and architecture. In: 2012 IEEE 17th conference emerging technology and factory automation ETFA. IEEE, Krakow, pp 1–8

    Google Scholar 

  12. Apolinarski W, Iqbal U, Parreira JX (2014) The GAMBAS middleware and SDK for smart city applications. In: 2014 IEEE international conference pervasive computing and communcations workshop PERCOM Workshop. IEEE, Budapest, Hungary, pp 117–122

    Google Scholar 

  13. Ziegler S, Crettaz C, Ladid L et al (2013) IoT6 – moving to an IPv6-based future IoT. In: Galis A, Gavras A (eds) Future internet. Springer, Berlin/Heidelberg, pp 161–172

    Chapter  Google Scholar 

  14. Verdouw CN, Sundmaeker H, Meyer F et al (2013) Smart agri-food logistics: requirements for the future internet. In: Kreowski H-J, Scholz-Reiter B, Thoben K-D (eds) Dynamics in logistics. Springer, Berlin/Heidelberg, pp 247–257

    Chapter  Google Scholar 

  15. Bröring A, Schmid S, Schindhelm C-K, et al Enabling IoT ecosystems through platform interoperability. http://www.arne-broering.de/BIG%20IoT%20-%20Vision.pdf. Accessed 19 Jan 2017

  16. Ganzha M, Paprzycki M, Pawlowski W, et al (2016) Semantic technologies for the IoT – an inter-IoT perspective. In: 2016 IEEE first international conference internet--things design. implement IoTDI. IEEE, Berlin, Germany, pp 271–276

    Google Scholar 

  17. Hovstø A, Oravec V, Samovich N, et al (2016) Deliverable D1.1 requirements capture framework, pp 1–61

    Google Scholar 

  18. Lanza J, Sanchez L, Gomez D et al (2016) A proof-of-concept for semantically interoperable federation of IoT experimentation facilities. Sensors 16:1006. https://doi.org/10.3390/s16071006

    Article  Google Scholar 

  19. Soursos S, Zarko IP, Zwickl P, et al (2016) Towards the cross-domain interoperability of IoT platforms. In: 2016 European conference networks and communcations EuCNC. IEEE, Athens, Greece, pp 398–402

    Google Scholar 

  20. Sheth AP, Kashyap V (1993) So far (Schematically) yet so near (Semantically). In: Proceedings IFIP WG 26 database semantics conference on interoper database system North-Holland Publishing Co., pp 283–312

    Google Scholar 

  21. Parent C, Spaccapietra S (2000) Database integration: the key to data interoperability. In: Advances object-oriented data model. Springer, Heidelberg, pp 221–253

    Google Scholar 

  22. Haslhofer B, Klas W (2010) A survey of techniques for achieving metadata interoperability. ACM Comput Surv 42:1–37. https://doi.org/10.1145/1667062.1667064

    Article  Google Scholar 

  23. Nagarajan M, Verma K, Sheth AP, Miller JA (2007) Ontology driven data mediation in web services. Int J Web Serv Res 4:104–126. https://doi.org/10.4018/jwsr.2007100105

    Article  Google Scholar 

  24. Ponnekanti SR, Fox A (2004) Interoperability among independently evolving web services. In: Middle-ware 04 proceedings 5th ACMIFIPUSENIX international conference on middleware, Springer, Toronto, Canada, pp 331–351

    Google Scholar 

  25. Serrano M, Barnaghi P, Carrez F, et al (2015) IoT semantic interoperability: research challenges, best practices, recommendations and next steps. IERC

    Google Scholar 

  26. Postscapes (2017) Internet of things toolkit. In: Internet things toolkit – stand. initiat. http://postscapes2.webhook.org/internet-of-things-resources/#technical. Accessed 23 Jan 2017

  27. Martin D, Burstein M, Hobbs J, et al (2004) OWL-S: semantic markup for web services

    Google Scholar 

  28. Roman D, Lausen H, Keller U, et al (2007) D2v1.4. Web service modeling ontology (WSMO). 29 June 2013

    Google Scholar 

  29. Fensel D, Kopecky J, Komazec S (2010) Light-weight annotations

    Google Scholar 

  30. Pedrinaci C (2009) Lightweight semantic annotations for services on the web

    Google Scholar 

  31. Vitvar T, Kopecky J, Viskova J, et al (2009) Chapter 5 semantic web services architecture with lightweight descriptions of services. In: Advanced computing. Elsevier, Amsterdam, pp 177–224

    Google Scholar 

  32. Gomes P, Cavalcante E, Rodrigues T et al (2015) A federated discovery service for the internet of things. In: Proceedings 2Nd workshop middleware context-aware application IoT. ACM, New York, pp 25–30

    Google Scholar 

  33. Nambi SNAU, Sarkar C, Prasad RV, Rahim A (2014) A unified semantic knowledge base for IoT. In: 2014 IEEE world forum internet things WF-IoT. IEEE. Seoul, pp 575–580

    Google Scholar 

  34. Spalazzi L, Taccari G, Bernardini A (2014) An internet of things ontology for earthquake emergency evaluation and response. IEEE, pp 528–534

    Google Scholar 

  35. Androcec D, Vrcek N (2016) Thing as a service interoperability: review and framework proposal. IEEE, pp 309–316

    Google Scholar 

  36. Qu C, Liu F, Tao M, Deng D (2016) An OWL-S based specification model of dynamic entity services for Internet of Things. J AMBIENT Intelligence Humaniz Comput 7:73–82. https://doi.org/10.1007/s12652-015-0302-y

    Article  Google Scholar 

  37. Hur K, Jin X, Lee KH (2015) Automated deployment of IoT services based on semantic description. In: Internet things WF-IoT 2015 IEEE 2nd world forum on, pp 40–45

    Google Scholar 

  38. Fattah SMM, Kim HS, Chong I (2016) Design of composite virtual objects for service entity creation in WoO based IoT environment. In: 2016 International conference on information networking. ICOIN, pp 372–374

    Google Scholar 

  39. Soldatos J, Kefalakis N (2014) Design principles for utility-driven services and cloud-based computing modelling for the internet of things. Int J WEB GRID Serv 10:139–167. https://doi.org/10.1504/IJWGS.2014.060254

    Article  Google Scholar 

  40. Akasiadis C, Tzortzis G, Spyrou E, Spyropoulos C (2015) Developing complex services in an IoT ecosystem. In: Internet things WF-IoT 2015 IEEE 2nd world forum on, pp 52–56

    Google Scholar 

  41. Sezer OB, Can SZ, Dogdu E (2015) Development of a smart home ontology and the implementation of a semantic sensor network simulator: an internet of things approach. In: International conference on collaboration technologies and systems. CTS 2015, pp 12–18

    Google Scholar 

  42. Li H, Seed D, Flynn B, et al (2016) Enabling semantics in an M2M/IoT service delivery platform. In: 2016 IEEE Tenth International conference semantic computing ICSC, pp 206–213

    Google Scholar 

  43. Thoma M, Braun T, Magerkurth C (2014) Enterprise integration of smart objects using semantic service descriptions. In: 2014 IEEE wireless communcation and network conference WCNC, pp 3426–3431

    Google Scholar 

  44. Jia B, Liu S, Yang Y (2014) Fractal cross-layer service with integration and interaction in internet of things. Int J Distrib Sens Netw 10(3):760248. https://doi.org/10.1155/2014/760248

    Article  Google Scholar 

  45. Conzon D, Brizzi P, Kasinathan P, et al (2015) Industrial application development exploiting IoT vision and model driven programming. In: 2015 18th International conference on Intelligence in next generation networks. ICIN, pp 168–175

    Google Scholar 

  46. Ryu M, Kim J, Yun J (2015) Integrated semantics service platform for the internet of things: a case study of a smart office. Sensors 15:2137–2160. https://doi.org/10.3390/s150102137

    Article  Google Scholar 

  47. Qu C, Liu F, Tao M (2015) Ontologies for the transactions on IoT. Int J Distrib Sens Netw. https://doi.org/10.1155/2015/934541

  48. Kim Y, Lee S, Chong I (2014) Orchestration in distributed web-of-objects for creation of user-centered IoT service capability. Wirel Pers Commun 78:1965–1980. https://doi.org/10.1007/s11277-014-2056-9

    Article  Google Scholar 

  49. Kovatsch M, Hassan YN, Mayer S (2015) Practical semantics for the Internet of Things: Physical states, device mashups, and open questions. In: 2015 5th International conference on the internet of things (IOT), pp 54–61

    Google Scholar 

  50. Hasemann H, Kroller A, Pagel M (2012) RDF provisioning for the Internet of Things. In: 3rd IEEE International conference on the internet of things (IOT), pp 143–150

    Google Scholar 

  51. Vecchio M, Sasidharan S, Marcelloni F, Giaffreda R (2013) Reconfiguration of environmental data compression parameters through cognitive IoT technologies. In: 2013 IEEE 9th International conference wireless mobile computing networking and communication WiMob, pp 141–146

    Google Scholar 

  52. Chun S, Seo S, Oh B, Lee KH (2015) Semantic description, discovery and integration for the internet of things. In: IEEE International conference on semantic computing (ICSC), pp 272–275

    Google Scholar 

  53. Desai P, Sheth A, Anantharam P (2015) Semantic gateway as a service architecture for IoT interoperability. In: 2015 IEEE International conference mobile services. IEEE, New York, pp 313–319

    Google Scholar 

  54. Kiljander J, D’elia A, Morandi F et al (2014) Semantic interoperability architecture for pervasive computing and internet of things. IEEE Access 2:856–873. https://doi.org/10.1109/ACCESS.2014.2347992

    Article  Google Scholar 

  55. Wang X, An H, Xu Y, Wang S (2015) Sensing network element ontology description model for internet of things. In: 2015 2nd International conference on information science control engineering. ICISCE. IEEE, Shanghai, pp 471–475

    Google Scholar 

  56. den Hartog F, Daniele L, Roes J (2015) Toward semantic interoperability of energy using and producing appliances in residential environments. In: 2015 12th Annu. IEEE consumer communcatons network conference CCNC, pp 170–175

    Google Scholar 

  57. Ara SS, Shamszaman ZU, Chong I (2014) Web-of-objects based user-centric semantic service composition methodology in the internet of things. Int J Distrib Sens Netw. https://doi.org/10.1155/2014/482873

  58. Noy NF, McGuinness DL (2001) Ontology development 101: a guide to creating your first ontology

    Google Scholar 

  59. Compton M, Barnaghi P, Bermudez L et al (2012) The SSN ontology of the W3C semantic sensor network incubator group. Web Semant Sci Serv Agents World Wide Web 17:25–32. https://doi.org/10.1016/j.websem.2012.05.003

    Article  Google Scholar 

  60. Poveda-Villalón M, Suárez-Figueroa MC, Gomez-Perez, Asuncion A (2012) Validating ontologies with OOPS! In: EKAW12 Proceedings 18th international conference on knowledge engineering. knowledge managagement. Springer, Galway, pp 267–281

    Google Scholar 

  61. OWAPS (2016) IoT security guidance. In: IoT security guidelines. https://www.owasp.org/index.php/IoT_Security_Guidance. Accessed 30 Jan 2017

  62. Lanthaler M, Gütl C (2012) On using JSON-LD to create evolvable RESTful services. ACM, New York, p 25

    Google Scholar 

  63. Aberer K, Hauswirth M, Salehi A (2006) The global sensor networks middleware for efficient and flexible deployment and interconnection of sensor networks. Ecole Polytechnique Federale de Lausanne, Lausanne

    Google Scholar 

Download references

Acknowledgement

This chapter has been fully supported by the Croatian Science Foundation under the project IP-2014-09-3877.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darko Andročec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andročec, D. (2017). Overcoming Service-Level Interoperability Challenges of the IoT. In: Mahmood, Z. (eds) Connected Environments for the Internet of Things. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-70102-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70102-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70101-1

  • Online ISBN: 978-3-319-70102-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics