Skip to main content

Big Data Challenges for the Internet of Things (IoT) Paradigm

  • Chapter
  • First Online:
Connected Environments for the Internet of Things

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

Millions of devices equipped with sensors are connected together to communicate with each other in order to collect and exchange data. The phenomenon of daily life objects that are interconnected through a worldwide network is known as the Internet of Things (IoT) or Internet of Objects. These sensors from a large number of devices or objects simultaneously and continuingly generate a huge amount of data, often referred to as Big Data. Handling this vast volume, and different varieties, of data imposes significant challenges when time, resources, and processing capabilities are constrained. Hence, Big Data analytics become even more challenging for data collected via the IoT. In this chapter, we discuss the challenges pertaining to Big Data in IoT; these challenges are associated with data management, data processing, unstructured data analytics, data visualization, interoperability, data semantics, scalability, data fusion, data integration, data quality, and data discovery. We present these challenges along with relevant solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aggarwal CC, Ashish N, Sheth A (2013) The internet of things: a survey from the data-centric perspective. In: Managing and mining sensor data. Springer, Boston, pp 383–428

    Chapter  Google Scholar 

  2. Perera C, Vasilakos AV (2016) A knowledge-based resource discovery for internet of things. Knowl-Based Syst 109:122–136

    Article  Google Scholar 

  3. Sundmaeker H, Guillemin P, Friess P, Woelfflé S (2010) Vision and challenges for realising the internet of things. The Cluster of European Research projects on the Internet of Things, European Commission

    Google Scholar 

  4. Verizon (2016) State of the market: internet of things 2016

    Google Scholar 

  5. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29:1645–1660

    Article  Google Scholar 

  6. Said O, Masud M (2013) Towards internet of things: survey and future vision. Int J Comput Netw IJCN 5:1–17

    Google Scholar 

  7. Said O, Tolba A (2012) SEAIoT: scalable e-health architecture based on internet of things. Int J Comput Appl 59

    Google Scholar 

  8. Evans D (2012) The internet of things how the next evolution of the internet is changing everything (April 2011). White Paper. Cisco Internet Business Solutions Group (IBSG)

    Google Scholar 

  9. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54:2787–2805

    Article  MATH  Google Scholar 

  10. Xia F, Yang LT, Wang L, Vinel A (2012) Internet of things. Int J Commun Syst 25:1101

    Article  Google Scholar 

  11. Yoo Y, Henfridsson O, Lyytinen K (2010) Research commentary—the new organizing logic of digital innovation: an agenda for information systems research. Inf Syst Res 21:724–735

    Article  Google Scholar 

  12. Wortmann F, Flüchter K (2015) Internet of things. Bus Inf Syst Eng 57:221–224

    Article  Google Scholar 

  13. Salim F, Haque U (2015) Urban computing in the wild: a survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and internet of things. Int J Hum-Comput Stud 81:31–48. https://doi.org/10.1016/j.ijhcs.2015.03.003

    Article  Google Scholar 

  14. Baheti R, Gill H (2011) Cyber-physical systems. Impact Control Technol 12:161–166

    Google Scholar 

  15. ZHANG Y, XIE F, DONG Y et al (2013) High fidelity virtualization of cyber-physical systems. Int J Model Simul Sci Comput 4:1340005

    Article  Google Scholar 

  16. Lee EA (2006) Cyber-physical systems-are computing foundations adequate. 2

    Google Scholar 

  17. Wan J, Yan H, Suo H, Li F (2011) Advances in cyber-physical systems research. TIIS 5:1891–1908

    Article  Google Scholar 

  18. Chao H, Cao Y, Chen Y (2010) Autopilots for small unmanned aerial vehicles: a survey. Int J Control Autom Syst 8:36–44

    Article  Google Scholar 

  19. Khan R, Khan SU, Zaheer R, Khan S (2012) Future internet: the internet of things architecture, possible applications and key challenges. IEEE:257–260

    Google Scholar 

  20. Wu M, Lu T-J, Ling F-Y et al (2010) Research on the architecture of internet of things. IEEE:V5-484–V5-487

    Google Scholar 

  21. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209

    Article  Google Scholar 

  22. Gantz J, Reinsel D (2011) Extracting value from chaos. IDC Iview 1142:1–12

    Google Scholar 

  23. Schonfeld E (2010) Costolo: twitter now has 190 million users tweeting 65 million times a day. Techcrunch June 8

    Google Scholar 

  24. Manyika J, Chui M, Brown B et al (2011) Big data: the next frontier for innovation, competition, and productivity

    Google Scholar 

  25. Hashem IAT, Yaqoob I, Anuar NB et al (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115

    Article  Google Scholar 

  26. Zikopoulos P, Eaton C (2011) Understanding big data: analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media, New York

    Google Scholar 

  27. Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag 35:137–144

    Article  Google Scholar 

  28. Schroeck M, Shockley R, Smart J et al (2012) Analytics: the real-world use of big data: how innovative enterprises extract value from uncertain data, executive report. IBM Institute for Business Value Saïd Business School, University of Oxford

    Google Scholar 

  29. Beaver D, Kumar S, Li HC et al (2010) Finding a needle in haystack: facebook’s photo storage, pp 1–8

    Google Scholar 

  30. Nasser T, Tariq RS (2015) Big data challenges. J Comput Eng Inf Technol 4:3

    Google Scholar 

  31. Russom P (2011) Big data analytics. TDWI Best Pract Rep Fourth Quart:1–35

    Google Scholar 

  32. Cukier K (2010) Data, data everywhere: a special report on managing information. Economist Newspaper, London

    Google Scholar 

  33. Ragothaman B, Prabha MS, Jose E, Sarojini B (2016) A survey on big data and internet of things. World Sci News 41:174

    Google Scholar 

  34. Shao G, Shin S-J, Jain S (2014) Data analytics using simulation for smart manufacturing. In: Proceedings 2014 winter simulation conference. IEEE Press, pp 2192–2203

    Google Scholar 

  35. Lakshman TV, Madhow U (1997) The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEEACM Trans Netw ToN 5:336–350

    Article  Google Scholar 

  36. Vilamovska A-M, Hatziandreu E, Schindler HR et al (2009) Study on the requirements and options for RFID application in healthcare

    Google Scholar 

  37. Deshpande B (2016) 3 challenges unique to IoT analytics. https://www.owler.com/reports/simafore/3-challenges-unique-to-iot-analytics/1476315363392

  38. Yassin AT (2014) Analyzing 6Vs of big data using system dynamics. In: 2nd scientific conference of the College of Science 2014

    Google Scholar 

  39. McNulty E (2014) Understanding Big Data: The Seven Vs. http://dataconomy.com/2014/05/seven-vs-big-data/

  40. Chan H, Perrig A (2003) Security and privacy in sensor networks. Computer 36:103–105

    Article  Google Scholar 

  41. Labrinidis A, Jagadish HV (2012) Challenges and opportunities with big data. Proc VLDB Endow 5:2032–2033

    Article  Google Scholar 

  42. Katal A, Wazid M, Goudar RH (2013) Big data: issues, challenges, tools and good practices. IEEE:404–409

    Google Scholar 

  43. Pradeepa A, Thanamani A (2013) Significant trends of big data analytics in social network. NGM Coll, India

    Google Scholar 

  44. Bauer MI, Johnson-Laird PN (1993) How diagrams can improve reasoning. Psychol Sci 4:372–378

    Article  Google Scholar 

  45. Larkin JH, Simon HA (1987) Why a diagram is (sometimes) worth ten thousand words. Cogn Sci 11:65–100

    Article  Google Scholar 

  46. Mayer RE, Gallini JK (1990) When is an illustration worth ten thousand words? J Educ Psychol 82:715

    Article  Google Scholar 

  47. Card SK, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San Francisco

    Google Scholar 

  48. Ware C (2012) Information visualization: perception for design. Elsevier, Amsterdam

    Google Scholar 

  49. Ma K-L, Stompel A, Bielak J et al (2003) Visualizing very large-scale earthquake simulations. In: Supercomput. 2003 ACMIEEE conference IEEE, pp 48–48

    Google Scholar 

  50. Yi JS, ah Kang Y, Stasko J (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph 13:1224–1231

    Article  Google Scholar 

  51. Lamping J, Rao R, Pirolli P (1995) A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press/Addison-Wesley Publishing Co, pp 401–408

    Google Scholar 

  52. Johnson B, Shneiderman B (1991) Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of 2nd conference on visualization. IEEE Computer Society Press, pp 284–291

    Google Scholar 

  53. Erickson T (1986) Artificial realities as data visualization environments: problems and prospects. Virtual Real-Appl Explor:3–22

    Google Scholar 

  54. Tam NT, Song I (2016) Big data visualization. In: Information science and applications ICISA 2016. Springer, pp 399–408

    Google Scholar 

  55. Gruber TR (1993) Toward principles for the design of ontologies used for knowledge sharing

    Google Scholar 

  56. Solodovnik I (2010) ONTOLOGY: from philosophy to ICT and related areas

    Google Scholar 

  57. Payam B, Wei W, Cory H, Kerry T (2012) Semantics for the internet of things: early progress and back to the future. Int J Semantic Web Inf Syst IJSWIS 1:1–21. https://doi.org/10.4018/jswis.2012010101

    Google Scholar 

  58. Nugraheni E, Akbar S, Saptawati GAP (2016) Framework of semantic data warehouse for heterogeneous and incomplete data. In: Region 10 symposium. TENSYMP 2016 IEEE. IEEE, pp 161–166

    Google Scholar 

  59. Ogiela L, Ogiela MR (2015) Semantic data analysis algorithms supporting decision-making processes. In: Broadband Wireless Computing and Communication Applications. BWCCA 2015 10th international conference on IEEE, pp 494–496

    Google Scholar 

  60. Sheth AP (2011) Computing for human experience: semantics empowered cyber-physical, social and ubiquitous computing beyond the Web

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpit Wongthongtham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wongthongtham, P., Kaur, J., Potdar, V., Das, A. (2017). Big Data Challenges for the Internet of Things (IoT) Paradigm. In: Mahmood, Z. (eds) Connected Environments for the Internet of Things. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-70102-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70102-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70101-1

  • Online ISBN: 978-3-319-70102-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics