Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 225))

Abstract

This chapter deals with the role of the pulvinar in spatial visual attention. There are at least two aspects in which the pulvinar seems to be instrumental for selective visual processes. The first aspect concerns pulvinar connectivity pattern. The pulvinar is connected with brain regions known to be playing a role in attentional mechanisms, such as area V4, the superior colliculus (SC), and the inferior parietal cortex (IP). Additionally, the pulvinar is richly interconnected with multiple cortical areas. This enables the pulvinar to serve as a hub for brain communication, potentially gating the flow of information across different regions. The second aspect concerns neuronal circuits intrinsic to the pulvinar. We claim these circuits are subserving three basic steps regarding the allocation of spatial attention: disengaging from the current focus of attention, moving it to a new target, and engaging it at a new position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bender DB, Youakim M (2001) Effect of attentive fixation in macaque thalamus and cortex. J Neurophysiol 85:219–234

    CAS  PubMed  Google Scholar 

  • Chalupa LM, Coyle RS, Lindsley DB (1976) Effect of pulvinar lesions on visual pattern discrimination in monkeys. J Neurophysiol 39:354–369

    CAS  PubMed  Google Scholar 

  • Crick FC (1984) Function of the thalamic reticular complex: the search light hypothesis. Proc Natl Acad Sci U S A 81:4586–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desimone R, Wessinger M, Thomas L, Schneider W (1990) Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb Symp Quant Biol 55:963–971

    Article  CAS  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  • Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88:220–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Desimone R (1996) Responses of cells in the superior colliculus during performance of a spatial attention task in the macaque. Rev Bras Biol 56(Su 2):257–279

    PubMed  Google Scholar 

  • Gattass R, Desimone R (2014) Effect of microstimulation of the superior colliculus on visual space attention. J Cogn Neurosci 26:1208–1219

    Article  PubMed  Google Scholar 

  • Gattass R, Sousa APB, Oswaldo-Cruz E (1979) Visual receptive fields of units in the pulvinar of Cebus monkey. Brain Res 160:413–430

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Galkin TW, Desimone R, Ungerleider L (2014) Subcortical connections of area V4 in the macaque. J Comp Neurol 522:1941–1965

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg ME, Wurst RH (1972) Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J Neurophysiol 35:560–574

    CAS  PubMed  Google Scholar 

  • Gross CG (1991) Contribution of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and the inferior temporal cortex. Neuropsychologia 29:497–515

    Article  CAS  PubMed  Google Scholar 

  • LaBerge D, Buchsbaum MS (1990) Positron emission tomography measurements of pulvinar activity during an attention task. J Neurosci 10:613–619

    CAS  PubMed  Google Scholar 

  • Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13:4700–4719

    CAS  PubMed  Google Scholar 

  • Petersen SE, Robinson DL, Keys W (1985) Pulvinar nuclei of the behaving rhesus monkey: visual response and their modulation. J Neurophysiol 54:867–885

    CAS  PubMed  Google Scholar 

  • Petersen SE, Robinson DL, Morris JD (1987) Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25:97–105

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  CAS  PubMed  Google Scholar 

  • Rafal RD, Posner MI (1987) Deficits in human visual spatial attention following thalamic lesions. Proc Natl Acad Sci U S A 84:7349–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends Neurosci 15:127–132

    Article  CAS  PubMed  Google Scholar 

  • Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual thalamus. Neuron 71:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337(6095):753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipp S (2000) A new anatomical basis for ‘spotlight’ metaphors of attention. Eur J Neurosci 12(Suppl 11):196

    Google Scholar 

  • Shipp S (2003) The functional logic of cortico-pulvinar connections. Philos Trans R Soc Lond Ser B Biol Sci 358:1605–1624

    Article  CAS  Google Scholar 

  • Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–541

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499

    Article  PubMed  Google Scholar 

  • Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Schafer RJ, Desimone R (2016) Pulvinar-cortex interactions in vision and attention. Neuron 89:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gattass, R., Soares, J.G.M., Lima, B. (2018). The Role of the Pulvinar in Spatial Visual Attention. In: The Pulvinar Thalamic Nucleus of Non-Human Primates: Architectonic and Functional Subdivisions. Advances in Anatomy, Embryology and Cell Biology, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-70046-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70046-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70045-8

  • Online ISBN: 978-3-319-70046-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics