Skip to main content

Simulation of the Effects of Spark Timing and External EGR on Gasoline Combustion Under Knock-Limited Operation at High Speed and Load

  • Conference paper
  • First Online:
Knocking in Gasoline Engines (KNOCKING 2017)

Abstract

Combustion in a spark ignition engine operated at high speed and load is investigated numerically with regard to knock behavior. The study focuses on the concurrent impact of spark timing and exhaust gas recirculation (EGR) on the severity of knock. Specifically, the possibility of knock reduction through the lowering of nitrogen oxide (NO) content in the rest-gas is examined. Simulations are carried out using a stochastic reactor model of engine in-cylinder processes along with a quasi-dimensional turbulent flame propagation model and multicomponent gas-phase chemistry as gasoline surrogate. The knock-limited conditions are detected using the detonation diagram. By lowering the NO content in the external EGR the end-gas auto-ignition is suppressed. This prevents a transition to knocking combustion and enables advancing of spark timing that yields better combustion phasing. As a result, fuel economy is improved and the potential benefits of cleaning theĀ EGR are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATDC:

after top dead center

CA/CAD:

crank angle/crank angle degree

CA10,50,90:

crank angle of 10%, 50% and 90% of the cumulative heat release

CFD:

computational fluid dynamics

EGR:

exhaust gas recirculation

EVO:

exhaust valve opening

IMEP:

indicated mean effective pressure

ISFC:

indicated specific fuel consumption

IVC:

intake valve closure

OP:

operating point

PS:

pressure signal in knock detection using KIS4 from IAV

RoHR:

rate of heat release

RoHR-u:

rate of heat release in the unburned zone

SI:

spark ignition

ST:

spark timing

CĻ•:

mixing time constant

lI :

integral length scale of the flow

n:

engine speed

uā€²:

velocity fluctuation

SL :

laminar flame speed

ST :

turbulent flame speed

Īµ:

reactivity parameter

Ļ„:

scalar mixing time

Ļ„i :

ignition delay time

Ļ„e :

excitation time

Ļ„t :

turbulent mixing time

Ī¾:

resonance parameter

References

  1. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google ScholarĀ 

  2. Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., Song, M.: The engine knock analysis ā€“ an overview. Appl. Energ. 92, 628ā€“636 (2012)

    ArticleĀ  Google ScholarĀ 

  3. Rechs, M.: Untersuchungen von Zylinderdruck- und Motorstrukturschwingungen zur Auslegung von Antiklopf-Regelsystemen, Dissertation, RWTH Aachen (1990)

    Google ScholarĀ 

  4. Kƶnig, G.: Auto-ignition and Knock Aerodynamics in Engine Combustion, Dissertation, Leeds University (1993)

    Google ScholarĀ 

  5. Chen, L., Li, T., Yin, T., Zheng, B.: A predictive model for knock onset in spark-ignition engines with cooled EGR. Energy Convers. Manage. 87, 946ā€“955 (2014)

    ArticleĀ  Google ScholarĀ 

  6. Wang, Z., Liu, H., Reitz, R.D.: Knocking combustion in spark-ignition engines. Prog. Energ. Combust. 61, 78ā€“112 (2017)

    ArticleĀ  Google ScholarĀ 

  7. Merola, S.S., Vaglieco, B.M.: Knock investigation by flame and radical species detection in spark ignition engine for different fuels. Energy Convers. Manage. 48(11), 2897ā€“2910 (2007)

    ArticleĀ  Google ScholarĀ 

  8. Bozza, F., De Bellis, V., Teodosio, L.: Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines. Appl. Energ. 169, 112ā€“125 (2016)

    ArticleĀ  Google ScholarĀ 

  9. Netzer, C., Seidel, L., Pasternak, M., Mauss, F., Lehtiniemi, H., Ravet, F.: 3D CFD engine knock prediction and evaluation based on detailed chemistry and detonation theory. Ber. Energie Verfahrenstechnik (BEV) 17(1), 185ā€“196 (2017). ISBN 978-3-945806-08-1

    Google ScholarĀ 

  10. Alger, T., Mangold, B.: Dedicated EGR: a new concept in high efficiency engines. SAE Int. J. Engines 2(1), 620ā€“631 (2009)

    ArticleĀ  Google ScholarĀ 

  11. Prabhu, S.K., Li, H., Miller, D.L., Cernansky, N.P.: The effect of nitric oxide on autoignition of a primary reference fuel blend in a motored engine. SAE Technical Paper 932757 (1993)

    Google ScholarĀ 

  12. Amano, T., Dryer, F.L.: Effect of dimethyl ether, NOx and ethane on CH4 oxidation: high pressure, intermediate temperature experiments and modeling. Proc. Comb. Inst. 27, 397ā€“404 (1998)

    ArticleĀ  Google ScholarĀ 

  13. Kawabata, Y., Sakonji, T., Amano, T.: The effect of NOx on knock in spark-ignition engines. SAE Technical Paper 1999-01-0572 (1999)

    Google ScholarĀ 

  14. StenlƄƄs, O., Gogan, A., Egnell, R., SundƩn, B., Mauss F.: The influence of nitric oxide on the occurrence of autoignition in the end gas of spark ignition engines. SAE Technical Paper 2002-01-2699 (2002)

    Google ScholarĀ 

  15. Hoffmeyer, H., Montefrancesco, E., Beck, L., Willand, J., Ziebert, F., Mauss, F.: CARE ā€“ catalytic reformated exhaust gases in turbocharged DISI-engines. SAE Int. J. Fuels Lubr. 2(1), 139ā€“148 (2009)

    ArticleĀ  Google ScholarĀ 

  16. Fischer, M., Kreutziger, P., Sun, Y., Kotrba, A.: Clean EGR for gasoline engines ā€“ innovative approach to efficiency improvement and emissions reduction simultaneously. SAE Technical Paper 2017-01-0683 (2017)

    Google ScholarĀ 

  17. Takaki, D., Tsuchida, H., Kobara, T., Akagi, M. et al.: Study of an EGR system for downsizing turbocharged gasoline engine to improve fuel economy. SAE Technical Paper 2014-01-1199 (2014)

    Google ScholarĀ 

  18. Poschl, M., Sattelmayer, T.: Influence of temperature inhomogeneities on knocking combustion. Combust Flame 153, 562ā€“573 (2008)

    ArticleĀ  Google ScholarĀ 

  19. LOGE AB. LOGEfuel gasoline v1.04, LOGEsoft v1.0, LOGEengine v1.0, software manuals (2017). http://www.logesoft.com

  20. Pasternak, M., Mauss, F., Xavier, F., Riess, M., Sens, M., Benz, A.: 0D/3D simulations of combustion in gasoline engines operated with multi spark plug technology. SAE Technical Paper 2015-01-1243 (2015)

    Google ScholarĀ 

  21. Pasternak, M., Mauss, F.: Sens., M., Riess, M., Benz, A., Stapf, K.G.: Gasoline engine simulations using zero-dimensional spark ignition stochastic reactor model and three-dimensional computational fluid dynamics engine model. Int. J. Engine Res. 17(1), 76ā€“85 (2016)

    ArticleĀ  Google ScholarĀ 

  22. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    BookĀ  MATHĀ  Google ScholarĀ 

  23. Pope, S.: Pdf methods for turbulent reactive flows. Prog. Energ. Combust 11(2), 119ā€“192 (1985)

    ArticleĀ  Google ScholarĀ 

  24. Netzer, C., Seidel, L., Pasternak, M., Klauer, C., et al.: Engine knock prediction and evaluation based on detonation theory using a quasi-dimensional stochastic reactor model. SAE Technical Paper 2017-01-0538 (2017). https://doi.org/10.4271/2017-01-0538

  25. Fischer, M., GĆ¼nther, M., Rƶpke, K., Lindemann, M., Placzek, R.: Knock Detection in Spark-Ignition Engines. MTZ Worldwide 3/2003, vol. 64 (2003)

    Google ScholarĀ 

  26. Stahr, A., Langfritz, P., GĆ¼nther, M., Kratzsch, M.: The DELTA knocking control ā€“ the necessary paradigm shift for engines with high power density. In: Proceedings 3rd Conference on ā€œSI Engine Knock ā€“ Irregular Combustionā€, Berlin (2013)

    Google ScholarĀ 

  27. Pilling, M.J.: Low-temperature combustion and autoignition. In: Hancock, G., Compton, R.G. (eds.) Comprehensive Chemical Kinetics, vol. 35, pp. 1ā€“794. Elsevier, Amsterdam (1997)

    Google ScholarĀ 

  28. Bradley, D., Morley, C., Gu, X., Emerson, D.: Amplified pressure waves during autoignition: relevance to CAI engines. SAE Technical Paper 2002-01-2868 (2002)

    Google ScholarĀ 

  29. Zeldovich, Y.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39, 211ā€“214 (1980)

    ArticleĀ  Google ScholarĀ 

  30. Bradley, D., Kalghatgi, G.T.: Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 156, 2307ā€“2318 (2009)

    ArticleĀ  Google ScholarĀ 

  31. Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133, 63ā€“74 (2003)

    ArticleĀ  Google ScholarĀ 

  32. Kalghatgi, G.T., Bradley, D.: Pre-ignition and ā€˜super-knockā€™ in turbocharged spark-ignition engines. SAE Int. J. Engines 13(4), 399ā€“414 (2012)

    ArticleĀ  Google ScholarĀ 

  33. Peters, N., Kerschgens, B., Paczko, G.: Super-knock prediction using a refined theory of turbulence. SAE Int. J. Engines 6(2), 953ā€“967 (2013)

    ArticleĀ  Google ScholarĀ 

  34. Pan, J., Shu, G., Wei, H.: Interaction of flame propagation and pressure waves during knocking combustion in spark-ignition engines. Combust. Sci. Techn. 186(2), 192ā€“209 (2014)

    ArticleĀ  Google ScholarĀ 

  35. Peters, N., Kerschgens, B., Jochim, B., Paczko, G.: Mega knock in super-charged gasoline engines interpreted as a localized developing detonation. In: Kratzsch, M., Guenther, M. (eds.) Knocking in Gasoline Engines. IAV Automotive Engineering, Berlin (2013)

    Google ScholarĀ 

  36. Bates, L., Bradley, D., Paczko, G., Peters, N.: Engine hotpots: modes of auto-ignition and reaction propagation. Combust. Flame 166, 80ā€“85 (2016)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Pasternak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pasternak, M., Netzer, C., Mauss, F., Fischer, M., Sens, M., Riess, M. (2018). Simulation of the Effects of Spark Timing and External EGR on Gasoline Combustion Under Knock-Limited Operation at High Speed and Load. In: GĆ¼nther, M., Sens, M. (eds) Knocking in Gasoline Engines. KNOCKING 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-69760-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69760-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69759-8

  • Online ISBN: 978-3-319-69760-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics