Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The organization of this chapter follows a two-step approach. The first step corresponds to searching for the substance of interest, that is, the relevant group of substances. The second step corresponds to the physical property of interest.

This chapter has three sections, characterized by the groups of the Periodic Table that the constituent elements belong to. The first section, Sect. 20.1, deals with the elements of Group IV of the Periodic Table and semiconducting binary compounds between elements of this group (IV–IV compounds). The second section, 20.2, treats the semiconducting binary compounds between the elements of Groups III and V (III–V compounds); Sect. 20.3 treats compounds between the elements of Groups II and VI (II–VI compounds). These two sections are subdivided further according to the first element in the formula of the compound.

The elements and compounds treated in Sect. 20.1 (Group IV and IV–IV compounds) are treated as one group; the data in the tables are given for the whole group in all cases. In Sect. 20.2 (III–V compounds) and 20.3 (II–VI compounds), data are given separately for each subdivision of those sections.

For each group of substances, the physical properties are organized into four classes. These are:

  1. 1.

    Crystal structure, mechanical and thermal properties

  1. 2.

    Electronic properties

  2. 3.

    Transport properties

  3. 4.

    Electromagnetic and optical properties

These property classes, finally, are subdivided into individual properties, which are described in the text, tables, and figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Madelung, U. Rössler, M. Schulz (Eds.): Semiconductors, Landolt–Börnstein, New Series, Vol. III/41 (Springer, Berlin, Heidelberg 1998–2003)

    Google Scholar 

  2. O. Madelung (Ed.): Semiconductors: Data Handbook, 3rd edn. (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  3. E.R. Johnson, S.M. Christian: Some properties of germanium-silicon alloys, Phys. Rev. 95, 560 (1954)

    Article  CAS  Google Scholar 

  4. B.J. Skinner: The thermal expansions of thoria, periclase and diamond, Am. Mineral. 42, 39 (1957)

    CAS  Google Scholar 

  5. G.A. Slack, S.F. Bartram: Thermal expansion of some diamondlike crystals, J. Appl. Phys. 46, 89 (1975)

    Article  CAS  Google Scholar 

  6. H.P. Singh: Determination of thermal expansion of germanium, rhodium and iridium by X-rays, Acta Crystallogr. 24a, 469 (1968)

    Article  Google Scholar 

  7. R.O.A. Hall: The thermal expansion of silicon, Acta Crystallogr. 14, 1004 (1961)

    Article  CAS  Google Scholar 

  8. A. Taylor, R.M. Jones: The crystal structure and thermal expansion of cubic and hexagonal silicon carbide. In: Silicon Carbide – A High Temperature Semiconductor, ed. by J.R. O’Connor, J. Smiltens (Pergamon, Oxford 1960) pp. 147–161

    Google Scholar 

  9. K.G. Lyon, G.L. Salinger, C.A. Swenson, G.K. White: Linear thermal expansion measurements on silicon from 6 to 340 K, J. Appl. Phys. 48, 865 (1977)

    Article  CAS  Google Scholar 

  10. Y. Okada, Y. Tokumaru: Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, J. Appl. Phys. 56, 314 (1984)

    Article  CAS  Google Scholar 

  11. S.I. Novikova: Thermal expansion of α-Sn, InSb and CdTe, Sov. Phys. Solid State (English Transl.) 2, 2087 (1961)

    Google Scholar 

  12. S.I. Novikova: Thermal Expansion of Ge at low temperatures, Fiz. Tverd. Tela 2, 43–44 (1960)

    CAS  Google Scholar 

  13. H.-M. Kagaya, T. Soma: Calculation of phonon dispersion curves for AlP, AlAs, and AlSb, Phys. Status Solidi (b) 127, 89 (1985)

    Article  CAS  Google Scholar 

  14. A.C. Victor: The heat capacity of diamond at high temperatures, J. Chem. Phys. 36, 1903 (1962)

    Article  CAS  Google Scholar 

  15. J.L. Warren, J.L. Yarnell, G. Dolling, R.A. Cowley: Lattice dynamics of diamond, Phys. Rev. 158, 805 (1967)

    Article  CAS  Google Scholar 

  16. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni: Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43, 7231 (1991)

    Article  CAS  Google Scholar 

  17. G. Dolling: Inelastic Scattering of Neutrons in Solids and Liquids, Vol. 11 (International Atomic Energy Agency, Vienna 1963) p. 37

    Google Scholar 

  18. G. Nilsson, G. Nelin: Study of the homology between silicon and germanium by thermal-neutron spectroscopy, Phys. Rev. B 6, 3777 (1972)

    Article  CAS  Google Scholar 

  19. G. Nilsson, G. Nelin: Phonon dispersion relations in Ge at 80 K, Phys. Rev. B 3, 364 (1971)

    Article  Google Scholar 

  20. P. Pavone, R. Bauer, K. Karch, O. Schütt, S. Vent, W. Windl, D. Strauch, S. Baroni, S. de Gironcoli: Ab initio phonon calculations in solids, Physica B 219/220, 439 (1996)

    Article  Google Scholar 

  21. D.L. Price, J.M. Rowe, R.M. Nicklow: Lattice dynamics of grey tin and indium antimonide, Phys. Rev. B 3, 1268 (1971)

    Article  Google Scholar 

  22. M. Hofmann, A. Zywietz, K. Karch, F. Bechstedt: Lattice dynamics of SiC polytypes within the bond-charge model, Phys. Rev. B 50, 13401 (1994)

    Article  CAS  Google Scholar 

  23. F.J. Morin, J.P. Maita: Electrical properties of silicon containing arsenic and boron, Phys. Rev. 96, 28 (1954)

    Article  CAS  Google Scholar 

  24. F.J. Morin, J.P. Maita: Electrical properties of silicon containing arsenic and boron, Phys. Rev. 94, 1525 (1954)

    Article  CAS  Google Scholar 

  25. A. Suzuki, A. Uemoto, M. Shigeta, K. Furukawa, S. Nakajima: Temperature dependence of electrical properties of non-doped and nitrogen-doped beta-SiC single crystals grown by chemical vapor deposition, Appl. Phys. Lett. 49, 450 (1986)

    Article  CAS  Google Scholar 

  26. G. Busch, O. Vogt: Elektrische Leitfähigkeit und Halleffekt von Ge-Si-Legierungen, Helv. Phys. Acta 33, 437 (1960)

    CAS  Google Scholar 

  27. F. Nava, C. Canali, C. Jacoboni, L. Reggiani: Electron effective masses and lattice scattering in natural diamond, Solid State Commun. 33, 475 (1980)

    Article  CAS  Google Scholar 

  28. A.G. Redfield: Electronic Hall effect in diamond, Phys. Rev. 94, 526 (1954)

    Article  CAS  Google Scholar 

  29. E.A. Konorova, S.A. Shevchenko: Investigation of the carrier mobility in diamonds, Sov. Phys. Semicond. 1, 299 (1967), (English Transl.)

    Google Scholar 

  30. E.A. Konorova, S.A. Shevchenko: Current carrier mobility in diamond, Fiz. Tekh. Poluprovodn. 1, 364 (1967)

    CAS  Google Scholar 

  31. L. Reggiani, S. Bosi, C. Canali, F. Nava: Hole-drift velocity in natural diamond, Phys. Rev. B 23, 3050 (1981)

    Article  CAS  Google Scholar 

  32. P.J. Dean, E.C. Lightowlers, D.R. Wright: Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond, Phys. Rev. A 140, 352 (1965)

    Article  CAS  Google Scholar 

  33. L. Reggiani, D. Waechter, S. Zukotynski: Hall-coefficient factor and inverse valence-band parameters of holes in natural diamond, Phys. Rev. B 28, 3550 (1983)

    Article  CAS  Google Scholar 

  34. C. Jacoboni, C. Canali, G. Ottaviani, A. Alberigi Quaranta: A review of some charge transport properties of silicon, Solid State Electron. 20, 77 (1977)

    Article  Google Scholar 

  35. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, A. Alberigi Quaranta: Electron drift velocity in silicon, Phys. Rev. B 12, 2265 (1975)

    Article  CAS  Google Scholar 

  36. P. Norton, T. Braggins, H. Levinstein: Impurity and lattice scattering parameters as determined from Hall and mobility analysis in n-type silicon, Phys. Rev. B 8, 5632 (1973)

    Article  CAS  Google Scholar 

  37. W.C. Mitchel, P.M. Hemenger: Temperature dependence of the Hall factor and the conductivity mobility in p-type silicon, J. Appl. Phys. 53, 6880 (1982)

    Article  CAS  Google Scholar 

  38. F.J. Morin: Lattice-scattering mobility in germanium, Phys. Rev. 93, 62 (1954)

    Article  CAS  Google Scholar 

  39. R. Berman, M. Martinez: The thermal conductivity of diamonds, Diamond Res. (Suppl. Ind. Diamond, Rev.) 7 (1976)

    Google Scholar 

  40. C.J. Glassbrenner, G.A. Slack: Thermal conductivity of silicon and germanium from 3K to the melting point, Phys. Rev. 134, A1058 (1964)

    Article  Google Scholar 

  41. W. Fulkerson, J.P. Moore, R.K. Williams, R.S. Graves, D.L. McElroy: Thermal conductivity, electrical resistivity, and Seebeck coefficient of silicon from 100 to 1300K, Phys. Rev. 167, 765 (1968)

    Article  CAS  Google Scholar 

  42. H.R. Shanks, P.D. Maycock, P.H. Sidles, G.C. Danielson: Thermal conductivity of silicon from 300 to 1400K, Phys. Rev. 130, 1743 (1963)

    Article  CAS  Google Scholar 

  43. Y.P. Joshi, G.S. Verma: Analysis of phonon conductivity: Application to Si, Phys. Rev. B 1, 750 (1970)

    Article  Google Scholar 

  44. G.A. Slack: Thermal conductivity of pure and impure silicon, silicon carbide, and diamond, J. Appl. Phys. 35, 3460 (1964)

    Article  CAS  Google Scholar 

  45. S.R. Bakhchieva, N.P. Kekelidse, M.G. Kekua: Thermal conductivity of germanium doped with silicon, tin, and aluminium, Phys. Status Solidi (a) 83, 139 (1984)

    Article  CAS  Google Scholar 

  46. T. Hanyu: Optical constants of gray tin single crystals from 1.18 to 4.95 eV, J. Phys. Soc. Jpn. 31, 1738 (1971)

    Article  CAS  Google Scholar 

  47. D.E. Aspnes, A.A. Studna: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B 27, 985 (1983)

    Article  CAS  Google Scholar 

  48. S. Klotz, J.M. Besson, M. Braden, K. Karch, F. Bechstedt, D. Strauch, P. Pavone: Transverse acoustic phonons of germanium up to 9.7 GPa by neutron inelastic scattering, Phys. Status Solidi (b) 198, 105 (1996)

    Article  CAS  Google Scholar 

  49. H.W. Icenogle, B.C. Platt, W.L. Wolfe: Refractive indexes and temperature coefficients of germanium and silicon, Appl. Opt. 15, 2348 (1976)

    Article  CAS  Google Scholar 

  50. V.L. Solozhenko: Chap. 2.1. In: Properties of Group III Nitrides, ed. by J.H. Edgar (Inspec, London 1994) p. 43

    Google Scholar 

  51. Y. Kumashiro: Refractory semiconductor of boron phosphide, J. Mater. Res. 5, 2933 (1990)

    Article  CAS  Google Scholar 

  52. L.G. Carpenter, P.J. Kirby: The electrical resistivity of boron nitride over the temperature range 700 degrees C to 1400 degrees C, J. Phys. D(15), 1143 (1982)

    Google Scholar 

  53. I.S. Bam, V.M. Davidenko, V.G. Sidorov, L.I. Fel’dgun, M.D. Skagalov, Y.K. Shalabutov: Electrical properties of cubic boron nitride, Sov. Phys. Semicond. (English Transl.) 10, 331 (1976)

    Google Scholar 

  54. I.S. Bam, V.M. Davidenko, V.G. Sidorov, L.I. Fel’dgun, M.D. Skagalov, Y.K. Shalabutov: Electrical properties of cubic boron nitride, Fiz. Tekh. Poluprov. 10, 554 (1976)

    CAS  Google Scholar 

  55. Y. Kumashiro, M. Hirabayashi, T. Kosiro, Y. Okada: Thermoelectric properties of boron phosphide, J. Less-Common Met. 143, 159 (1988)

    Article  CAS  Google Scholar 

  56. S.I. Novikova, N. Kh. Abrikhosov: Sov. Phys. Solid State 5, 1558 (1963), (English Transl.)

    Google Scholar 

  57. S.I. Novikova, N. Kh. Abrikhosov: Fiz. Tverd. Tela 5, 2138 (1963)

    CAS  Google Scholar 

  58. J.C. Nipko, C.K. Loong: Phonon excitations and related thermal properties of aluminum nitride, Phys. Rev. B 57, 10550 (1998)

    Article  CAS  Google Scholar 

  59. C.K. Loong: In: Gallium Nitride and Related Materials, MRS Symposia Proceedings, Vol. 395, ed. by F.A. Ponce, R.D. Dupuis, S. Nakamura, J.A. Edmond (Materials Research Society, Pittsburgh 1996) p. 423

    Google Scholar 

  60. T. Pletl, P. Pavone, U. Engel, D. Strauch: First-principles study of lattice-dynamical and elastic trends in tetrahedral semiconductors, Phys. B 263/264, 392 (1999)

    Google Scholar 

  61. A. Onton: In: Proceedings of the 10th International Conference on the Physics of Semiconductors (Cambridge USAEC, Oak Ridge 1970) p. 107

    Google Scholar 

  62. B. Monemar: Fundamental energy gaps of AlAs and Alp from photoluminescence excitation spectra, Phys. Rev. B 8, 5711 (1973)

    Article  CAS  Google Scholar 

  63. D. Strauch, B. Dorner, K. Karch: In: Phonons 89, ed. by S. Hunklinger, W. Ludwig, G. Weiss (World Scientific, Singapore 1990) p. 82

    Google Scholar 

  64. A. Kobayashi, O.F. Sankey, S.M. Volz, J.D. Dow: Semiempirical tight-binding band structures of wurtzite semiconductors: AlN, CdS, CdSe, ZnS, and ZnO, Phys. Rev. B 28, 935 (1983)

    Article  CAS  Google Scholar 

  65. M. Huang, W.Y.J. Ching: A minimal basis semi-ab initio approach to the band structures of semiconductors, Phys. Chem. Solids 46, 977 (1985)

    Article  CAS  Google Scholar 

  66. H.G. Grimmeiss, W. Kischio, A. Rabenau: Über das AlP: Darstellung, elektrische und optische Eigenschaften, J. Phys. Chem. Solids 16, 302 (1960)

    Article  CAS  Google Scholar 

  67. H. Welker: Über neue halbleitende Verbindungen, Z. Naturforsch. 8a, 248 (1953)

    CAS  Google Scholar 

  68. V.M. Muzhdaba, A. Ya Nashel’skii, P.V. Tamarin, S.S. Shalyt: Thermal conductivity and thermo-emf of AlSb and GaP at low temperatures, Sov. Phys. Solid State 10, 2265 (1969), (English Transl.)

    Google Scholar 

  69. V.M. Muzhdaba, A. Ya Nashel’skii, P.V. Tamarin, S.S. Shalyt: Fiz. Tverd. Tela 10, 2866 (1968)

    CAS  Google Scholar 

  70. G.A. Slack: Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34, 321 (1973)

    Article  CAS  Google Scholar 

  71. J. Pastrnak, L. Roskovcova: Refraction index measurements on aluminum nitride single crystals, Phys. Status Solidi 14, K5 (1966)

    Article  CAS  Google Scholar 

  72. B. Monemar: Determination of band gap and refractive index of AIP from optical absorption, Solid State Commun. 8, 1295 (1970)

    Article  CAS  Google Scholar 

  73. S. Adachi: GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific, Singapore 1994)

    Book  Google Scholar 

  74. W.J. Turner, W.E. Reese: Infrared lattice bands in AlSb, Phys. Rev. 127, 126 (1962)

    Article  CAS  Google Scholar 

  75. A.U. Sheleg, V.A. Savastenko: Determinaton of elastic constants of hexagonal crystals from measured values of dynamic atomic displacements, Vesti Akad. Nauk BSSR, Ser. Fiz. Mat. Nauk 3, 126 (1976)

    Google Scholar 

  76. T. Soma: The thermal expansion of GaP below room temperature, Solid State Commun. 34, 375 (1980)

    Article  CAS  Google Scholar 

  77. A. Debernardi, M. Cardona: Isotopic effects on the lattice constant in compound semiconductors by perturbation theory: An ab initio calculation, Phys. Rev. B 54, 11305 (1996)

    Article  CAS  Google Scholar 

  78. T. Azuhata, T. Matsunaga, K. Shimada, K. Yoshida, T. Sota, K. Suzuki, S. Nakamura: Optical phonons in GaN, Physica B 219/220, 493 (1996)

    Article  Google Scholar 

  79. V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov: Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Phys. Rev. B 58, 12899 (1998)

    Article  CAS  Google Scholar 

  80. J.L. Yarnell, J.L. Warren, R.G. Wenzel, P.J. Dean: Neutron Inelastic Scattering (International Atomic Energy Agency, Vienna 1968) p. 301

    Google Scholar 

  81. P.H. Borcherds, K. Kunc, G.F. Alfrey, R.L. Hall: The lattice dynamics of gallium phosphide, J. Phys. C: Solid State Phys. 12, 4699 (1979)

    CAS  Google Scholar 

  82. C. Eckl, P. Pavone, J. Fritsch, U. Schröder: In: The Physics of Semiconductors, Vol. 1, ed. by M. Scheffler, R. Zimmermann (World Scientific, Singapore 1996) p. 229

    Google Scholar 

  83. D. Strauch, B. Dorner: Phonon dispersion in GaAs, J. Phys. Condens. Matter 2, 1457 (1990)

    Article  CAS  Google Scholar 

  84. M.K. Farr, J.G. Traylor, S.K. Sinha: Lattice dynamics of GaSb, Phys. Rev. B 11, 1587 (1975)

    Article  CAS  Google Scholar 

  85. M. Ilegems, H.C. Montgomery: Electrical properties of n-type vapor-grown gallium nitride, J. Phys. Chem. Solids 34, 885 (1972)

    Article  Google Scholar 

  86. Y.C. Kao, O. Eknoyan: Electron and hole carrier mobilities for liquid phase epitaxially grown GaP in the temperature range 200–550 K, J. Appl. Phys. 54, 2468 (1983)

    Article  CAS  Google Scholar 

  87. J.S. Blakemore: Semiconducting and other major properties of gallium arsenide, J. Appl. Phys. 53, R123 (1982)

    Article  CAS  Google Scholar 

  88. R.A. Stradling, R.A. Wood: The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements, J. Phys. C 3, L94 (1970)

    CAS  Google Scholar 

  89. E.K. Sichel, J.I. Pankove: Thermal conductivity of GaN, K, J. Phys. Chem. Solids 38(330), 25–360 (1977)

    Google Scholar 

  90. M.H. Kim, S.S. Bose, B.J. Skromme, B. Lee, G.E. Stillman: Hall effect analysis of high purity p-type GaAs grown by metalorganic chemical vapor deposition, J. Electron. Mater. 20, 671 (1991)

    Article  CAS  Google Scholar 

  91. M.G. Holland: In: Proc. 7th Int. Conf. Phys. Semicond., Paris (Dunod, Paris 1964) p. 1161

    Google Scholar 

  92. M.G. Holland: In: Proc. Int. Conf. Phys. Semicond., Paris (Dunod, Paris 1964) p. 713

    Google Scholar 

  93. E. Ejder: Refractive index of GaN, Phys. Status Solidi (a) 6, K39 (1971)

    Article  Google Scholar 

  94. B. Clerjaud, C. Naud, B. Deveaud, B. Lambert, B. Plot, C. Bremond, C. Benjeddou, G. Guillot, A. Nouailhat: The acceptor level of vanadium in II-V compounds, J. Appl. Phys. 58, 4207 (1985)

    Article  CAS  Google Scholar 

  95. G.A. Samara: Temperature and pressure dependences of the dielectric constants of semiconductors, Phys. Rev. B 27, 3494 (1983)

    Article  CAS  Google Scholar 

  96. K. Haruna, H. Maeta, K. Ohashi, T. Koike: The thermal expansion coefficient and Gruneisen parameter of InP crystal at low temperatures, J. Phys. C 20, 5275 (1987)

    CAS  Google Scholar 

  97. P.W. Sparks, C.A. Swenson: Thermal expansions from 2 to 40K of Ge, Si, and four III-V compounds, Phys. Rev. 163, 779 (1967)

    Article  CAS  Google Scholar 

  98. D.F. Gibbons: Thermal expansion of some crystals with the diamond structure, Phys. Rev. 112, 779 (1958)

    Article  Google Scholar 

  99. P.H. Borcherds, G.F. Alfrey, D.H. Saunderson, A.D.B. Woods: Phonon dispersion curves in indium phosphide, J. Phys. C 8, 2022 (1975)

    CAS  Google Scholar 

  100. A. Mooradian, G.B. Wright: First order Raman effect in III–V compounds, Solid State Commun. 4, 431 (1966)

    Article  CAS  Google Scholar 

  101. J. Fritsch, P. Pavone, U. Schröder: Ab initio calculation of the phonon dispersion in bulk InP and in the InP(110) surface, Phys. Rev. B 52, 11326 (1995)

    Article  CAS  Google Scholar 

  102. N.S. Orlova: Variation of phonon dispersion curves with temperature in indium arsenide measured by X-ray thermal diffuse scattering, Phys. Status Solidi (b) 119, 541 (1983)

    Article  CAS  Google Scholar 

  103. R. Carles, N. Saint-Cricq, J.B. Renucci, M.A. Renucci, A. Zwick: Second-order Raman scattering in InAs, Phys. Rev. B 22, 4804 (1980)

    Article  CAS  Google Scholar 

  104. W.J. Turner, W.E. Reese, G.D. Pettit: Exciton absorption and emission in InP, Phys. Rev. 136, A1467 (1964)

    Article  Google Scholar 

  105. S. Logothetidis, L. Vina, M. Cardona: Temperature dependence of the dielectric function and the interband critical points of InSb, Phys. Rev. B 31, 947 (1985)

    Article  CAS  Google Scholar 

  106. Y.J. Jung, B.H. Kim, H.J. Lee, J.C. Wolley: Electrical transport and energy-band structure in InAs, Phys. Rev. 26, 3151 (1982)

    Article  CAS  Google Scholar 

  107. O.G. Folberth, O. Madelung, H. Weiss: Die elektrischen Eigenschaften von Indiumsarsenid, Z. Naturforsch. 9a, 954 (1954)

    CAS  Google Scholar 

  108. O. Madelung, H. Weiss: Die elektrischen Eigenschaften von InAs II, Z. Naturforsch. 9a, 527 (1954)

    CAS  Google Scholar 

  109. T.L. Tansley, C.P. Foley: Electron mobility in indium nitride, Electron. Lett. 20, 1087 (1984)

    Article  Google Scholar 

  110. W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C.H. Gatos, H.C. Gatos: Electron mobility and free-carrier absorption in InP; determination of the compensation ratio, J. Appl. Phys. 51, 2659 (1980)

    Article  CAS  Google Scholar 

  111. J.D. Wiley: Semiconductors and Semimetals, Vol. 10 (Academic Press, New York 1975), ed. by R. K. Willardson, A. C. Beer

    Google Scholar 

  112. U. Busch, E. Steigmeier: Helv. Phys. Acta 34, 1 (1961)

    CAS  Google Scholar 

  113. H.J. Hrostowski, F.J. Morin, T.H. Geballe, G.H. Wheatley: Hall effect and conductivity of InSb, Phys. Rev. 100, 1672 (1955)

    Article  CAS  Google Scholar 

  114. N.I. Volokobinskaya, V.V. Galavanov, D.N. Nasledov: Electrical and galvanomagnetic properties of high purity InSb, Sov. Phys. Solid State 1, 687 (1959), (English Transl.)

    CAS  Google Scholar 

  115. N.I. Volokobinskaya, V.V. Galavanov, D.N. Nasledov: Fiz. Tverd. Tela 1, 756 (1959)

    Google Scholar 

  116. D.L. Rode: Electron Transport in InSb, InAs, and InP, Phys. Rev. 3, 3287 (1971)

    Article  Google Scholar 

  117. S.A. Aliev, A. Ya Nashelskii, S.S. Shalyt: Thermal conductivity and thermoelectric power of n-type InP at low temperatures, Sov. Phys. Solid State (English Transl.) 7, 1287 (1965)

    Google Scholar 

  118. S.A. Aliev, A. Ya Nashelskii, S.S. Shalyt: Fiz. Tverd. Tela 7, 1590 (1965)

    Google Scholar 

  119. H. Katzman, J. Moss, W.F. Libby: The heat capacity of indium antimonide II, J. Phys. Chem. Solids 32, 2786 (1971)

    Article  CAS  Google Scholar 

  120. K.-O. Park, J.M. Sivertsen: Temperature dependence of the thermal expansivity of annealed BaO, J. Am. Ceram. Soc. 62, 218 (1979)

    Article  CAS  Google Scholar 

  121. G.K. White, O.L. Anderson: The temperature variation of the dielectric constant of ‘‘pure’’ CaF2, SrF2, BaF2, and MgO, J. Appl. Phys. 37, 430 (1966)

    Article  CAS  Google Scholar 

  122. C.M. Osburn, R.W. Vest: Electrical properties of single crystals, bicrystals, and polycrystals of MgO, J. Am. Ceram. Soc. 54, 428 (1971)

    Article  CAS  Google Scholar 

  123. D.S. Kupperman, H. Weinstock, Y. Chen: Thermal conductivity of additively colored MgO, J. Low Temp. Phys. 14, 277 (1974)

    Article  CAS  Google Scholar 

  124. N.N. Kovalev, M.V. Krasin’kova: Sov. Phys. Solid State 16, 1960 (1975)

    Google Scholar 

  125. O. Kamada, T. Takizawa, T. Sakurai: A high temperature X-ray diffractometer using a solar furnace, Jpn. J. Appl. Phys. 10, 485 (1971)

    Article  CAS  Google Scholar 

  126. R.R. Reeber, G.W. Powell: Thermal expansion of ZnS from 2 to 317K, J. Appl. Phys. 38, 1531 (1967)

    Article  CAS  Google Scholar 

  127. R. Helbig, P. Wagner: Halleffekt und Anisotropie der Beweglichkeit der Elektronen in ZnO, J. Phys. Chem. Solids 35, 327 (1974)

    Article  Google Scholar 

  128. P. Wagner: Ph.D. Thesis (Universität Erlangen-Nürnberg 1978)

    Google Scholar 

  129. G.A. Slack: In: Physics and Chemistry of II–VI Compounds, ed. by M. Aven, J.S. Prener (1967) p. 557

    Google Scholar 

  130. K. Sato, S. Adachi: Optical properties of ZnTe, J. Appl. Phys. 73, 926 (1993)

    Article  CAS  Google Scholar 

  131. L. Ward: Zinc selenide (ZnSe) zinc telluride (ZnTe). In: Handbook Optical Constants of Solids, Vol. 2, ed. by E.D. Palik (Academic, New York 1991) p. 737

    Google Scholar 

  132. S. Ozaki, S. Adachi: Optical constants of cubic ZnS, Jpn. J. Appl. Phys. 32, 5008 (1993)

    Article  CAS  Google Scholar 

  133. T.B. Kobyakov, G.S. Pado: Sov. Phys. Solid State 9, 1707 (1968), (English Transl.)

    Google Scholar 

  134. T.M. Bieniewski, S.J. Czyzak: Refractive indexes of single hexagonal ZnS and CdS crystals, J. Opt. Soc. Am. 53, 496 (1963)

    Article  CAS  Google Scholar 

  135. Q. Guo, M. Ikejira, M. Nishio, H. Ogawa: Optical properties of zinc telluride in vacuum ultraviolet region, Solid State Commun. 100, 813 (1996)

    Article  CAS  Google Scholar 

  136. H. Yoshikawa, S. Adachi: Optical constants of ZnO, Jpn. J. Appl. Phys. 36, 6237 (1997)

    Article  CAS  Google Scholar 

  137. Y.F. Tsay, S.S. Mitra, J.F. Vetelino: Temperature dependence of energy gaps in some II–VI compounds, J. Phys. Chem. Solids 34, 2167 (1973)

    Article  CAS  Google Scholar 

  138. J.L. Birman, H. Samelson, A. Lempicki: Reflection and emission of polarized light in ZnS and CdS, GT E Res. Dev. J. 1, 1 (1961)

    Google Scholar 

  139. M. Cardona, G. Harbeke: Optical properties and band structure of Wurtzite-type crystals and rutile, Phys. Rev. A 137, 1467 (1965)

    Article  CAS  Google Scholar 

  140. S. Adachi, T. Taguchi: Optical properties of ZnSe, Phys. Rev B 43, 9569 (1991)

    Article  CAS  Google Scholar 

  141. K.C. Mills: The heat capacities of Ga2O3(c), Tl2O3(c), ZnO(c), and CdO(c), High Temp. High Press. 4, 371 (1972)

    CAS  Google Scholar 

  142. V.S. Oskotskii, I.B. Kobyakov, A.V. Solodukhin: Fiz. Tverd. Tela 22, 1479 (1980)

    Google Scholar 

  143. V.S. Oskotskii, I.B. Kobyakov, A.V. Solodukhin: Sov. Phys. Solid State (English Transl.) 22, 861 (1980)

    Google Scholar 

  144. J.R. Chelikowsky, M.L. Cohen: Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14, 556 (1976)

    Article  CAS  Google Scholar 

  145. M.S. Kushwaha, S.S. Kushwaha: Lattice dynamics of ZnTe, CdTe, GaP, and InP, Can. J. Phys. 58, 351 (1980)

    Article  CAS  Google Scholar 

  146. G.E. Moore, M.V. Klein: Thermal conductivity of doped and pure cadmium sulfide, Phys. Rev. 179, 722 (1969)

    Article  CAS  Google Scholar 

  147. J.L. Beene, G. Contwell: Electrical properties of pure CdS, J. Appl. Phys. 57, 1171 (1985)

    Article  Google Scholar 

  148. J. Oberlé, B. Kippelen, A. Daunois, J.-B. Grun: Single-wavelength pulsed optical logic based on dichroism in CdS, Opt. Commun. 90, 339 (1992)

    Article  Google Scholar 

  149. A.J. Varkey, A.F. Fort: Transparent conducting cadmium oxide thin films prepared by a solution growth technique, Thin Solid Films 239, 211 (1994)

    Article  CAS  Google Scholar 

  150. S. Ninomiya, S. Adachi: Optical properties of cubic and hexagonal CdSe, J. Appl. Phys. 78, 4681 (1995)

    Article  CAS  Google Scholar 

  151. D. Bagot, R. Granger, S. Rolland: Thermal Expansion Coefficient and Bond Strength in Hg1− xCdxTe and Hg1− xZnxTe, Phys. Status Solidi (b) 177, 295 (1993)

    Article  CAS  Google Scholar 

  152. C.R. Whitsett, J.G. Broerman, C.J. Summers: Crystal growth and Properties of Hg1−xCdxSe alloys. In: Semiconductors and Semimetals, Vol. 16, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York 1981) p. 54

    Google Scholar 

  153. J.J. Dubowski, T. Dietl, W. Szymanska, R.R. Galazka: Electron scattering in CdxHg1−xTe, J. Phys. Chem. Solids 42, 351 (1981)

    Article  CAS  Google Scholar 

  154. A. Noguera, S.M. Wasim: Thermal conductivity of mercury telluride, Phys. Rev. B 32, 8046 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In selecting the ‘‘most important information'' from the huge data collection in Landolt–Börnstein, the author found great help in the new Semiconductors: Data Handbook [20.2]. Again, the data in this Springer Handbook of Materials Data represent only a small fraction of the information given in Semiconductors: Data Handbook, which is about 700 pages long. I am much indebted to my colleague O. Madelung for kindly presenting me the manuscript of that Handbook prior to publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Martienssen, W. (2018). Semiconductors. In: Warlimont, H., Martienssen, W. (eds) Springer Handbook of Materials Data. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-69743-7_20

Download citation

Publish with us

Policies and ethics