Skip to main content

Diffusion-Weighted Imaging in Magnetic Resonance Imaging of the Prostate

  • Chapter
  • First Online:
Diffusion Weighted Imaging of the Genitourinary System

Abstract

Prostate cancer is the most common cancer type among men. Multiparametric MRI (mpMRI) plays a critical role in detection and targeted sampling of localized disease. Diffusion-weighted imaging (DWI) is an integral component of mpMRI. DWI is documented to not only aid lesion detection but also to enable to understand aggressiveness of localized prostate cancer. Herein, we discuss technical aspects of DWI with its established clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hricak H, et al. Anatomy and pathology of the male pelvis by magnetic resonance imaging. AJR Am J Roentgenol. 1983;141(6):1101–10.

    Article  CAS  PubMed  Google Scholar 

  2. Steyn JH, Smith FW. Nuclear magnetic resonance imaging of the prostate. Br J Urol. 1982;54(6):726–8.

    Article  CAS  PubMed  Google Scholar 

  3. Turkbey B, et al. Prostate cancer: value of multiparametric MR imaging at 3T for detection—histopathologic correlation. Radiology. 2010;255(1):89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agarwal HK, et al. Optimal high b-value for diffusion weighted MRI in diagnosing high risk prostate cancers in the peripheral zone. J Magn Reson Imaging. 2016.

    Google Scholar 

  5. Hambrock T, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259(2):453–61.

    Article  PubMed  Google Scholar 

  6. Oto A, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol. 2011;197(6):1382–90.

    Article  PubMed  Google Scholar 

  7. Turkbey B, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258(2):488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  8. PI-RADStm, A.C.o.R. Prostate Imaging and Reporting and Data System 2015, version 2; 2015.

    Google Scholar 

  9. Le Bihan D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    Article  PubMed  Google Scholar 

  10. Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  11. Katahira K, et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol. 2011;21(1):188–96.

    Article  PubMed  Google Scholar 

  12. Metens T, et al. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol. 2012;22(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenkrantz AB, et al. Diffusion-weighted imaging of the prostate: Comparison of b1000 and b2000 image sets for index lesion detection. J Magn Reson Imaging. 2013;38(3):694–700.

    Article  PubMed  Google Scholar 

  14. Turkbey B, et al. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin. 2016;66(4):326–36.

    Article  PubMed  Google Scholar 

  15. De Cobelli F, et al. Apparent diffusion coefficient value and ratio as noninvasive potential biomarkers to predict prostate cancer grading: comparison with prostate biopsy and radical prostatectomy specimen. AJR Am J Roentgenol. 2015;204(3):550–7.

    Article  PubMed  Google Scholar 

  16. Kim JH, et al. Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region. J Magn Reson Imaging. 2008;28(5):1173–9.

    Article  PubMed  Google Scholar 

  17. Kitajima K, et al. Do apparent diffusion coefficient (ADC) values obtained using high b-values with a 3-T MRI correlate better than a transrectal ultrasound (TRUS)-guided biopsy with true Gleason scores obtained from radical prostatectomy specimens for patients with prostate cancer? Eur J Radiol. 2013;82(8):1219–26.

    Article  PubMed  Google Scholar 

  18. Salami SS, et al. Risk stratification of prostate cancer utilizing apparent diffusion coefficient value and lesion volume on multiparametric MRI. J Magn Reson Imaging. 2017;45(2):610–6.

    Article  PubMed  Google Scholar 

  19. Turkbey B, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2010;258(2):488–95.

    Article  PubMed  Google Scholar 

  20. Woo S, et al. Preoperative evaluation of prostate cancer aggressiveness: using ADC and ADC ratio in determining Gleason score. AJR Am J Roentgenol. 2016;207(1):114–20.

    Article  PubMed  Google Scholar 

  21. Rosenkrantz AB, Taneja SS. Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. AJR Am J Roentgenol. 2014;202(1):109–20.

    Article  PubMed  Google Scholar 

  22. Litjens GJ, et al. Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology. 2012;265(1):260–6.

    Article  PubMed  Google Scholar 

  23. Barentsz JO, et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol. 2016;69(1):41–9.

    Article  PubMed  Google Scholar 

  24. Turkbey B, et al. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging. 2014;39(6):1443–8.

    Article  PubMed  Google Scholar 

  25. Gawlitza J, et al. Impact of the use of an endorectal coil for 3T prostate MRI on image quality and cancer detection rate. Sci Rep. 2017;7:40640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beyersdorff D, et al. MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol. 2005;185(5):1214–20.

    Article  PubMed  Google Scholar 

  27. Shah ZK, et al. Performance comparison of 1.5-T endorectal coil MRI with 3.0-T nonendorectal coil MRI in patients with prostate cancer. Acad Radiol. 2015;22(4):467–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sosna, J., et al., MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol, 2004. 11(8): p. 857–62.

    Google Scholar 

  29. Torricelli P, et al. Comparative evaluation between external phased array coil at 3T and endorectal coil at 1.5T: preliminary results. J Comput Assist Tomogr. 2006;30(3):355–61.

    Article  PubMed  Google Scholar 

  30. Wagner M, et al. Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol. 2010;65(6):460–4.

    Article  CAS  PubMed  Google Scholar 

  31. Tamada T, et al. Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology. 2008;248(2):531–9.

    Article  PubMed  Google Scholar 

  32. Johnson W, et al. The value of hyoscine butylbromide in pelvic MRI. Clin Radiol. 2007;62(11):1087–93.

    Article  CAS  PubMed  Google Scholar 

  33. Kabakus IM, et al. Does abstinence from ejaculation before prostate MRI improve evaluation of the seminal vesicles? AJR Am J Roentgenol. 2016;207(6):1205–9.

    Article  PubMed  Google Scholar 

  34. Qayyum A, et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol. 2004;183(4):1079–83.

    Article  PubMed  Google Scholar 

  35. Barrett T, et al. Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer. Radiology. 2012;263(3):751–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mehralivand S, et al. Prospective evaluation of prostate imaging-reporting and Data System Version 2 using the International Society of Urological Pathology Prostate Cancer Grade Group System. J Urol. 2017;198(3):583–90.

    Article  PubMed  Google Scholar 

  37. Rosenkrantz AB, et al. Interobserver reproducibility of the PI-RADS Version 2 Lexicon: a multicenter study of six experienced prostate radiologists. Radiology. 2016;280(3):793–804.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turkbey B, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186(5):1818–24.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown AM, et al. Recent advances in image-guided targeted prostate biopsy. Abdom Imaging. 2015;40(6):1788–99.

    Article  PubMed  Google Scholar 

  40. Siddiqui MM, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenkrantz AB, et al. Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol. 2016;196(6):1613–8.

    Article  PubMed  Google Scholar 

  42. Mottet N, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618–29.

    Article  PubMed  Google Scholar 

  43. de Rooij M, et al. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol. 2014;66(3):430–6.

    Article  PubMed  Google Scholar 

  44. Gupta RT, et al. Can radiologic staging with multiparametric MRI enhance the accuracy of the partin tables in predicting organ-confined prostate cancer? Am J Roentgenol. 2016;207(1):87–95.

    Article  Google Scholar 

  45. Kim CK, et al. Diffusion-weighted MRI as a predictor of extracapsular extension in prostate cancer. AJR Am J Roentgenol. 2014;202(3):W270–6.

    Article  PubMed  Google Scholar 

  46. Baco E, et al. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer. J Urol. 2015;193(2):466–72.

    Article  PubMed  Google Scholar 

  47. Kongnyuy M, et al. Tumor contact with prostate capsule on magnetic resonance imaging: a potential biomarker for staging and prognosis. Urol Oncol. 2017;35(1):30.e1–8.

    Article  Google Scholar 

  48. de Rooij M, et al. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2016;70(2):233–45.

    Article  PubMed  Google Scholar 

  49. Bhowmik NM, et al. Benign causes of diffusion restriction foci in the peripheral zone of the prostate: diagnosis and differential diagnosis. Abdom Radiol (NY). 2016;41(5):910–8.

    Article  Google Scholar 

  50. Logan JK, et al. Changes observed in multiparametric prostate magnetic resonance imaging characteristics correlate with histopathological development of chronic granulomatous prostatitis after intravesical Bacillus Calmette-Guerin therapy. J Comput Assist Tomogr. 2014;38(2):274–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rais-Bahrami S, et al. Clinical and multiparametric MRI signatures of granulomatous prostatitis. Abdom Radiol (NY). 2017;42(7):1956–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Turkbey M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehralivand, S., Knaus, C., Choyke, P.L., Turkbey, B. (2018). Diffusion-Weighted Imaging in Magnetic Resonance Imaging of the Prostate. In: Akata, D., Papanikolaou, N. (eds) Diffusion Weighted Imaging of the Genitourinary System. Springer, Cham. https://doi.org/10.1007/978-3-319-69575-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69575-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69574-7

  • Online ISBN: 978-3-319-69575-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics