Skip to main content

Bandgap Engineering of Quantum Semiconductor Microstructures

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering
  • 246 Accesses

Abstract

The continuous progress in advancing thin films growth methods has enabled fabrication of innovative devices based on semiconductor microstructures. The epitaxial growth techniques, such as molecular beam epitaxy, chemical beam epitaxy, metal-organic chemical vapor deposition, and numerous derivatives of these techniques have made the films and microstructures based on Si, Si/SiGe, GaAs. GaAs/AlGaAs and other group IV-IV, III-V, II-V, and II-VI semiconductors readily available for research and commercial applications. Nevertheless, the output of these techniques has frequently proven limited when considering fabrication of microstructures with interfaces controlled at the atomic level, the integration of different bandgap materials within the same wafer or fabrication of microstructures having arbitrary profiles of their bandgaps either in the plane of the growth or in the direction of the growth. Some of these challenging problems have been resolved by taking advantage of the technology of infrared (IR) and ultraviolet (UV) which allowed delivering microstructures with characteristics unattainable with conventional methods of fabrication. This chapter provides a review of the laser-based methods for fabrication of quantum semiconductor microstructures with bandgap engineered at the atomic level. The discussion involves bandgap engineering by pulsed laser deposition and quantum well/quantum dot intermixing techniques employing IR and UV lasers for the general area of application concerning monolithically integrated photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi S, Takeyama S, Takagi Y, Dubowski JJ, Deleporte E (1994) Quantization of the excitonic polaritons in CdTe/CdMnTe multiple quantum wells. Superlattice Microst 16:1–4

    ADS  Google Scholar 

  • Aithal S, Liu N, Dubowski JJ (2017) Photocorrosion metrology of photoluminescence emitting GaAs/AlGaAs heterostructures. J Phys D Appl Phys 50:035106

    ADS  Google Scholar 

  • Akane T, Sugioka K, Midorikawa K, Dubowski JJ, Aoki N, Toyoda K (2001) X-ray photoelectron spectroscopic study of KrF excimer laser nitrided InP surface. J Appl Phys 90:5851–5855

    ADS  Google Scholar 

  • Aspnes DE, Studna AA (1983) Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B 27:985–1009

    ADS  Google Scholar 

  • Aziz MJ (2008) Film growth mechanisms in pulsed laser deposition. Appl Phys A 93:579

    ADS  Google Scholar 

  • Baumgartner P, Wegscheider W, Bichler M, Schedelbeck G, Neumann R, Abstreiter G (1997) Single-electron transistor fabricated by focused laser beam-induced doping of a GaAs/AlGaAs heterostructure. Appl Phys Lett 70:2135–2137

    ADS  Google Scholar 

  • Beal R, Liu N, Moumanis K, Aimez V, Dubowski JJ (2011) Multi section bandgap tuned superluminescent diodes fabricated by UV laser induced quantum well intermixing. ICO International Conference on Information Photonics, Article number 5953731, ISBN: 978-161284315-5

    Google Scholar 

  • Beal R, Moumanis K, Aimez V, Dubowski JJ (2013) Enhanced spectrum superluminescent diodes fabricated by infrared laser rapid thermal annealing. Opt Laser Technol 54:401–406

    ADS  Google Scholar 

  • Beal R, Aimez V, Dubowski JJ (2015) Excimer laser induced quantum well intermixing: a reproducibility study of the process for fabrication of photonic integrated devices. Opt Express 23:1073–1080

    ADS  Google Scholar 

  • Beal R, Moumanis K, Aimez V, Dubowski JJ (2016) Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes. Opt Laser Technol 78:5–9

    ADS  Google Scholar 

  • Bleu Y, Bourquard F, Tite T, Loir AS, Maddi C, Donnet C, Garrelie F (2018) Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front Chem 6:572

    ADS  Google Scholar 

  • Chrisey DB, Hubler GK (1994) Pulsed laser deposition of thin films. Wiley, New York

    Google Scholar 

  • Dubowski JJ (1991) Pulsed laser evaporation and epitaxy. Acta Phys Pol A 80:221–244

    ADS  Google Scholar 

  • Dubowski JJ (2003) Laser-induced bandgap shifting for photonic device integration. US Patent 6,514,784 B1

    Google Scholar 

  • Dubowski JJ (2009) Laser-based bandgap engineering of quantum semiconductor wafers. In: 2009 Lasers & electro-optics & the Pacific Rim conference on lasers and electro-optics, vols 1 and 2, pp 458–459, 1348

    Google Scholar 

  • Dubowski JJ, Thompson JR, Rolfe SJ, Mccaffrey JP (1991) Laser-induced growth of Cd1-XMnxTe and CdTe-Cd1-XMnxTe Superlattices. Superlattice Microst 9:327–330

    ADS  Google Scholar 

  • Dubowski JJ, Charbonneau NS, Roth AP, Poole PJ, Lacelle C, Buchanan M, Mitchell IV, Goldberg RD (1997) Comparative study of laser- and ion implantation-induced quantum well intermixing in GaInAsP/InP microstructures. SPIE, Bellingham

    Google Scholar 

  • Dubowski JJ, Charbonneau NS, Poole PJ, Roth AP, Lacelle C, Buchanan M (1998) Laser writing of quantum well intermixed GaInAsP/InP microstructures. SPIE, Bellingham

    Google Scholar 

  • Dubowski JJ, Rowell N, Aers GC, Lafontaine H, Houghton DC (1999) Laser-induced selective area band-gap tuning in Si/Si12 xGex microstructures. Appl Phys Lett 74:1948–1950

    ADS  Google Scholar 

  • Dubowski JJ, Poole PJ, Sproule GI, Marshall G, Moisa S, Lacelle C, Buchanan M (1999a) Enhanced quantum-well photoluminescence in InGaAs/InGaAsP heterostructures following excimer-laser-assisted surface processing. Appl Phys Mater Sci Proc 69:S299–S303

    ADS  Google Scholar 

  • Dubowski JJ, Rowell N, Aers GC, Lafontaine H, Houghton DC (1999b) Laser-induced selective area band-gap tuning in Si/Si1-xGex microstructures. Appl Phys Lett 74:1948–1950

    ADS  Google Scholar 

  • Dubowski JJ, Allen CN, Fafard S (2000) Laser-induced InAs/GaAs quantum dot intermixing. Appl Phys Lett 77:3583–3585

    ADS  Google Scholar 

  • Dubowski JJ, Feng Y, Poole PJ, Buchanan M, Poirier S, Genest J, Aimez V (2002) Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd: YAG laser-induced quantum well intermixing. J Vacuum Sci Technol Vacuum Surf Films 20:1426–1429

    ADS  Google Scholar 

  • Dubowski JJ, Song CY, Lefebvre J, Wasilewski Z, Aers G, Liu HC (2004) Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation. J Vac Sci Technol A 22:887–890

    ADS  Google Scholar 

  • Dubowski JJ, Stanowski R, Dalacu D, Poole PJ (2018) Precision tuning of InAs quantum dot emission wavelength by iterative laser annealing. Opt Laser Technol 103:382–386

    ADS  Google Scholar 

  • Eason R (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley-Interscience, Hoboken

    Google Scholar 

  • Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61–65

    Google Scholar 

  • Forsberg F, Lapadatu A, Kittilsland G, Martinsen S, Roxhed N, Fischer AC, Stemme G, Samel B, Ericsson P, Høivik N, Bakke T, Bring M, Kvisterøy T, Rør A, Niklaus F (2015) CMOS-integrated Si/SiGe quantum-well infrared microbolometer focal plane arrays manufactured with very large-scale heterogeneous 3-D integration. IEEE J Sel Top Quant Electron 21:30–40

    ADS  Google Scholar 

  • Fox M, Ispasoiu R (2017) Quantum wells, superlattices, and band-gap engineering. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Cham

    Google Scholar 

  • Genest J (2008) Interdiffusion de puits quantiques contrôlée par irradiation laser excimère pour l'intégration de composants photoniques. PhD, Université de Sherbrooke

    Google Scholar 

  • Genest J, Dubowski JJ, Aimez V (2007a) Suppressed intermixing in InAlGaAs/AlGaAs/GaAs and AlGaAs/GaAs quantum well heterostructures irradiated with a KrF excimer laser. Appl Phys A Mater Sci Process 89:423–426

    ADS  Google Scholar 

  • Genest J, Dubowski JJ, Aimez V, Pauc N, Drouin D, Post M (2007b) UV laser controlled quantum well intermixing in InAlGaAs/GaAs heterostructures. J Phys Conf Ser 59:605–609

    ADS  Google Scholar 

  • Genest J, Beal R, Aimez V, Dubowski JJ (2008) ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures. Appl Phys Lett 93:071106

    ADS  Google Scholar 

  • Heidrich H (2003) Monolithically integrated photonic and optoelectronic circuits based on InP – system applications, technology, perspectives. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 9:295–298

    Google Scholar 

  • Heiss M, Fontana Y, Gustafsson A, Wüst G, Magen C, O’regan DD, Luo JW, Ketterer B, Conesa-Boj S, Kuhlmann AV, Houel J, Russo-Averchi E, Morante JR, Cantoni M, Marzari N, Arbiol J, Zunger A, Warburton RJ, Fontcuberta I Morral A (2013) Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater 12:439

    ADS  Google Scholar 

  • Hirayama Y, Tarucha S, Suzuki Y, OKAMOTO H (1988) Fabrication of a GaAs quantum-well-wire structure by Ga focused-ion-beam implantation and its optical properties. Phys Rev B 37:2774–2777

    ADS  Google Scholar 

  • James AG (2014) History and current status of commercial pulsed laser deposition equipment. J Phys D Appl Phys 47:034005

    Google Scholar 

  • Kaleem M, Zhang X, Zhuang Y, He J-J, Liu N, Dubowski JJ (2013) UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices. Opt Laser Technol 51:36–42

    ADS  Google Scholar 

  • Kalish R, Kramer LY, Law KK, Merz JL, Feldman LC, Jacobson DC, Wseir BE (1992) Local intermixing of GaAs/GaAlAs quantum structures by individual ion implant tracks. Appl Phys Lett 61:2589–2591

    ADS  Google Scholar 

  • Kelly MK, Nebel CE, Stutzmann M, Böhm G (1996) Lateral structuring of III-V quantum well systems with pulsed-laser-induced transient thermal gratings. Appl Phys Lett 68:1984–1986

    ADS  Google Scholar 

  • Labrie D, Dubowski JJ (1994) Evidence for the miniband dispersion in the photoreflectance of a CdTe/Cd1-xMnxTe superlattice. Superlattice Microst 16:25–28

    ADS  Google Scholar 

  • Labrie D, Wang X, Dubowski JJ (1992) Excited quantum states in Cdte-Cd1-Xmnxte multiple-quantum wells and superlattices grown by pulsed-laser evaporation and epitaxy. Can J Phys 70:1027–1034

    ADS  Google Scholar 

  • Ledentsov NN, Bimberg D, Alferov ZI (2008) Progress in epitaxial growth and performance of quantum dot and quantum wire lasers. J Lightwave Technol 26:1540–1555

    ADS  Google Scholar 

  • Lee ASW, Mackenzie M, Thompson DA, Bursik J, Robinson BJ, Weatherly GC (2001) Enhanced band-gap blueshift due to group V intermixing in InGaAsP multiple quantum well laser structures induced by low temperature grown InP. Appl Phys Lett 78:3199–3201

    ADS  Google Scholar 

  • Lewalski A, Khoi NT, Kossacki P, Gaj JA, Dubowski JJ (1993) Magnetooptical analysis of Interface mixing in pulsed-laser evaporation and epitaxy-grown Cdte/Cd0.9mn0.1te multiple-quantum-well and superlattice. Acta Phys Pol A 84:571–574

    ADS  Google Scholar 

  • Liu N, Dubowski JJ (2013) Chemical evolution of InP/InGaAs/InGaAsP microstructures irradiated in air and deionized water with ArF and KrF lasers. Appl Surf Sci 270:16–24

    ADS  Google Scholar 

  • Liu N, Moumanis K, Dubowski JJ (2010) ArF excimer laser-induced quantum well intermixing in dielectric layer coated InGaAs/InGaAsP microstructures. Pacific Int. Conf. on Applications of Lasers and Optics (PICALO), Wuhan, China, TA1673.P33, paper M404

    Google Scholar 

  • Liu N, Blais S, Dubowski JJ (2012a) Surface and interface study of SiO2-x coated InP/InGaAs/InGaAsP semiconductor laser microstructures processed in the soft KrF laser irradiation regime. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVI, Proc. of SPIE, 7920, 7920C, https://doi.org/10.1117/12.879453

  • Liu N, Moumanis K, Blais S, Dubowski JJ (2012b) XPS study of InP/InGaAs/InGaAsP microstructures irradiated with ArF laser in air and deionized water. In: Synthesisi and Potonics of Nanaoscale Materials IX, Proc. of SPIE, Vol. 8245, 8245E, https://doi.org/10.1117/12.913082

  • Liu N, Poulin S, Dubowski JJ (2013) Enhanced photoluminescence emission from bandgap shifted InGaAs/InGaAsP/InP microstructures processed with UV laser quantum well intermixing. J Phys D Appl Phys 46:445103

    ADS  Google Scholar 

  • Lockwood DJ, Syme RWG, Dubowski JJ, Deleporte E (1998) Confined electronic states in CdTe/Cd0.9Mn0.1Te superlattices: a resonance Raman study. J Appl Phys 83:4258–4263

    ADS  Google Scholar 

  • Lott P, Schleifenbaum H, Meiners W, Wissenbach K, Hinke C, Bültmann J (2011) Design of an optical system for the in situ process monitoring of selective laser melting (SLM). Phys Proc 12:683–690

    ADS  Google Scholar 

  • Malik S, roberts C, Murray R, Pate M (1997) Tuning self-assembled InAs quantum dots by rapid thermal annealing. Appl Phys Lett 71:1987–1989

    ADS  Google Scholar 

  • Marsh JH (1993) Quantum-well intermixing. Semicond Sci Technol 8:1136–1155

    ADS  Google Scholar 

  • Marsh JH (2007) Quantum well intermixing revolutionizes high power laser diodes. http://www.laser-journal.de 5:32–35

  • Marsh JH, Bryce AC, Delarue RM, Mclean CJ, Mckee A, Lullo G (1996) Fabrication of quantum well photonic integrated circuits using laser processing. Appl Surf Sci 106:326–334

    ADS  Google Scholar 

  • Mckee A, Mclean CJ, Bryce AC, Rue RMDL, Marsh JH, Button C (1994) High quality wavelength tuned multiquantum well GaInAs/GaInAsP lasers fabricated using photoabsorption induced disordering. Appl Phys Lett 65:2263–2265

    ADS  Google Scholar 

  • Mckee A, Mclean CJ, Lullo G, Bryce AC, Delarue RM, Marsh JH, Button CC (1997) Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing. IEEE J Quantum Electron 33:45–55

    ADS  Google Scholar 

  • Morris D, Benson E, Dubowski JJ (1993) Low-temperature photoluminescence study of Cd1-Xmnxte films grown by pulsed-laser evaporation and epitaxy. Surf Sci 294:373–380

    ADS  Google Scholar 

  • Nah J, Likamwa P (2006) Monolithically integrated all-optical switch using quantum well intermixing. Opt Quant Electron 38:567–573

    Google Scholar 

  • Ooi b s, Mcilvaney k, Street MW, Helmy AS, Ayling SG, Bryce AC, Marsh JH, Roberts JS (1997) Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion. IEEE J Quantum Electron 33:1784–1793

    ADS  Google Scholar 

  • Pépin A, Vieu C, Schneider M, Launois H, Nissim Y (1997) Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures. J Vacuum Sci Technol B 15:142–153

    ADS  Google Scholar 

  • Ravindra NM, Abedrabbo S, Wei C, Tong FM, Nanda AK, Speranza AC (1998) Temperature-dependent emissivity of silicon-related materials and structures. IEEE Trans Semicond Manuf 11:30–39

    Google Scholar 

  • Ryoken H, Sakaguchi I, Ohashi N, Sekiguchi T, Hishita S, Haneda H (2005) Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method. J Mater Res 20:2866–2872

    ADS  Google Scholar 

  • Schuppert B, Schmidtchen J, Splett A, Fischer U, Zinke T, Moosburger R, Petermann K (1996) Integrated optics in silicon and SiGe-heterostructures. J Lightwave Technol 14:2311–2323

    ADS  Google Scholar 

  • Skogen EJ, Raring JW, Morrison GB, Wang CS, Lal V, Masanovic ML, Coldren LA (2005) Monolithically integrated active components: a quantum-well intermixing approach. IEEE J Sel Top Quant Electron 11:343–355

    ADS  Google Scholar 

  • Splett A, Zinke T, Petermann K, Kasper E, Kibbel H, Herzog H, Presting H (1994) Integration of waveguides and photodetectors in SiGe for 1.3 μm operation. IEEE Photon Technol Lett 6:59–61

    ADS  Google Scholar 

  • Stanowski R, Dubowski JJ (2009) Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique. Appl Phys A Mater Sci Process 94:667–674

    ADS  Google Scholar 

  • Stanowski R, Bouazis S, Dubowski JJ (2008) Selective area bandgap engineering of InGaAsP/InP quantum well microstructures with an infrared laser rapid thermal annealing technique. Proc SPIE 6869:68790D

    ADS  Google Scholar 

  • Stanowski R, Martin M, Ares R, Dubowski JJ (2009) Iterative bandgap engineering at selected areas of quantum semiconductor wafers. Opt Express 17:19842–19847

    ADS  Google Scholar 

  • Syme RWG, Lockwood DJ, Dion MM, Dubowski JJ (1997) Folded acoustic modes and photoelastic coefficients in CdTe/Cd1-xMnxTe superlattices. Solid State Commun 103:239–242

    ADS  Google Scholar 

  • Takagi Y, Adachi S, Takeyama S, Tackeuchi A, Muto S, Dubowski JJ (1994) Ultrafast exciton spin relaxation in Gaas/Algaas and Cdmnte multiple-quantum wells. J Lumin 58:202–205

    Google Scholar 

  • Watanabe N, Takahashi N, Tsushima K (1998) Non-equilibrium garnet films grown by pulsed laser deposition. Mater Chem Phys 54:173–176

    Google Scholar 

  • Yenice KM, Lee SA, Venkateswaran UD, Williamson W III, Dubowski JJ (1994) Photoluminescence of CdTe-Cd[sub 1 – x]Mn[sub x]Te multiple quantum well at high pressure. AIP Conf Proc 309:609–612

    ADS  Google Scholar 

  • Zhang Q, Tu H, Gu S, Zhang Z, Wang G, Wei F, Ma T, Zhao H, Wei Q, Yin H, Fan Y, Jia R, Yan J (2018) Influence of rapid thermal annealing on Ge-Si interdiffusion in epitaxial multilayer Ge0.3Si0.7/Si superlattices with various GeSi thicknesses. ECS J Solid State Sci Technol 7:P671–P676

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan J. Dubowski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dubowski, J.J. (2020). Bandgap Engineering of Quantum Semiconductor Microstructures. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics