Skip to main content

Plasticity of the Muscle Stem Cell Microenvironment

  • Chapter
  • First Online:
Stem Cell Microenvironments and Beyond

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1041))

Abstract

Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology—quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5(3):298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17(5):267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A, Sinagra G, Giacca M (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 10(5):844–854

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger CF, von Maltzahn J, Rudnicki MA (2010) Extrinsic regulation of satellite cell specification. Stem Cell Res Ther 1(3):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki M (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2)

    Google Scholar 

  • Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Ma R (2013) Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12(1):75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, von Maltzahn J, Dumont NA, Stark DA, Wang YX, Nhan K, Frenette J, Cornelison DD, Rudnicki MA (2014) Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol 205(1):97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Ta C, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20(3):265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berria R, Wang L, Richardson DK, Finlayson J, Belfort R, Pratipanawatr T, De Filippis EA, Kashyap S, Mandarino LJ (2006) Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab 290(3):E560–E565

    Article  CAS  PubMed  Google Scholar 

  • Berry SE (2015) Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med 4(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128(2):81–93

    Article  CAS  Google Scholar 

  • Biressi S, Miyabara EH, Gopinath SD, Carlig PM, Rando TA (2014) A Wnt-TGFbeta2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med 6(267):267ra176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bjornson CRR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Ta R (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30(2):232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Bose WE, Yao CC, Kramer RH, Blau HM (2001) Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 265(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Boonen KJ, Rosaria-Chak KY, Baaijens FP, van der Schaft DW, Post MJ (2009) Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol Cell Physiol 296(6):C1338–C1345

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Ta R (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    Article  CAS  PubMed  Google Scholar 

  • Brigitte M, Schilte C, Plonquet A, Baba-Amer Y, Henri A, Charlier C, Tajbakhsh S, Albert M, Gherardi RK, Chrétien F (2010) Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 62(1):268–279

    Article  CAS  PubMed  Google Scholar 

  • Bursac N, Juhas M, Rando TA (2015) Synergizing engineering and biology to treat and model skeletal muscle injury and disease. Annu Rev Biomed Eng 17:217–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson BM, Gutmann E (1972) Development of contractile properties of minced muscle regenerates in the rat. Exp Neurol 36(2):239–249

    Article  CAS  PubMed  Google Scholar 

  • Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454(7203):528–532

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, Almada AE, Mondino A, Wagers AJ, Manfredi AA, Rovere-Querini P (2015) FOXP3+ T Cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One 10(6):e0128094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceafalan LC, Popescu BO, Hinescu ME (2014) Cellular players in skeletal muscle regeneration. Biomed Res Int 2014:957014

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerletti M, Jang YC, Finley LW, Haigis MC, Wagers AJ (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10(5):515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakkalakal JV, Thompson J, Parks RJ, Jasmin BJ (2005) Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J 19(8):880–891

    Article  CAS  PubMed  Google Scholar 

  • Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang NC, Chevalier FP, Rudnicki MA (2016) Satellite cells in muscular dystrophy—lost in polarity. Trends Mol Med 22(6):479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YH, Hornsey MA, Klinge L, Jorgensen LH, Laval SH, Charlton R, Barresi R, Straub V, Lochmuller H, Bushby K (2009) Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy. Hum Mol Genet 18(11):1976–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18(4):1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clow C, Jasmin BJ (2010) Brain-derived neurotrophic factor regulates satellite cell differentiation and skeletal muscle regeneration. Mol Biol Cell 21(13):2182–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Ta R (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Ta R (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764

    Article  CAS  PubMed  Google Scholar 

  • Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239(1):79–94

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20(3):255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189(7):3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinulovic I, Furrer R, Di Fulvio S, Ferry A, Beer M, Handschin C (2016a) PGC-1alpha modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle. Skelet Muscle 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinulovic I, Furrer R, Beer M, Ferry A, Cardel B, Handschin C (2016b) Muscle PGC-1alpha modulates satellite cell number and proliferation by remodeling the stem cell niche. Skelet Muscle 6(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, Spans L, Gayan-Ramirez G, Deldicque L, Hespel P, Carmeliet G, Vanderschueren D, Claessens F (2014) A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J 28(7):2979–2994

    Article  CAS  PubMed  Google Scholar 

  • Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21(12):1455–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ (2015) GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab 22(1):164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, Kung S, Jiang KP, Conboy IM (2014) Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 5:4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elster JL, Rathbone CR, Liu Z, Liu X, Barrett HH, Rhoads RP, Allen RE (2013) Skeletal muscle satellite cell migration to injured tissue measured with 111In-oxine and high-resolution SPECT imaging. J Muscle Res Cell Motil 34(5–6):417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne muscular dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. J Cell Mol Med 10(3):758–769

    Article  CAS  PubMed  Google Scholar 

  • Fairclough RJ, Wood MJ, Davies KE (2013) Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet 14(6):373–378

    Article  CAS  PubMed  Google Scholar 

  • Faulkner JA, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34(11):1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Fedorov YV, Rosenthal RS, Olwin BB (2001) Oncogenic Ras-induced proliferation requires autocrine fibroblast growth factor 2 signaling in skeletal muscle cells. J Cell Biol 152(6):1301–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink E, Fortin D, Serrurier B, Ventura-Clapier R, Bigard AX (2003) Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury. J Muscle Res Cell Motil 24(7):421–429

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, Sun K, Sun H, Wang H, Zhang Z, Zhang BT, Sheng C, Wang H, Hu P (2015) Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 25(9):1082–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459

    Article  CAS  PubMed  Google Scholar 

  • Furrer R, Eisele PS, Schmidt A, Beer M, Handschin C (2017) Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1alpha-controlled BNP. Sci Rep 7:40789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Munoz-Canoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Gibson MC, Schultz E (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodpaster BH, Wolf D (2004) Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes 5(4):219–226

    Article  PubMed  Google Scholar 

  • Griesbeck O, Parsadanian AS, Sendtner M, Thoenen H (1995) Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res 42(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Guérin CW, Holland PC (1995) Synthesis and secretion of matrix-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn 202(1):91–99

    Article  PubMed  Google Scholar 

  • Handschin C, Mortezavi A, Plock J, Eberli D (2015) External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv Drug Deliv Rev 82-83:168–175

    Article  CAS  PubMed  Google Scholar 

  • Haralampieva D, Betzel T, Dinulovic I, Salemi S, Stoelting M, Kramer SD, Schibli R, Sulser T, Handschin C, Eberli D, Ametamey SM (2016) Noninvasive PET imaging and tracking of engineered human muscle precursor cells for skeletal muscle tissue engineering. J Nucl Med 57(9):1467–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haralampieva D, Salemi S, Dinulovic I, Sulser T, MA S, Handschin C, Eberli D (2017) Human muscle precursor cells overexpressing PGC-1alpha enhance early skeletal muscle tissue formation. Cell Transplant 26(6):1103–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, Bailey BA, Rudnicki MA, Houser SR (2016) Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circ Res 118(7):1143–1150. discussion 1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi YK, Engvall E, Arikawa-Hirasawa E, Goto K, Koga R, Nonaka I, Sugita H, Arahata K (1993) Abnormal localization of laminin subunits in muscular dystrophies. J Neurol Sci 119(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153(2):376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147

    Article  PubMed  CAS  Google Scholar 

  • Jang YC, Sinha M, Cerletti M, Dall'Osso C, Wagers aJ (2011) Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb Symp Quant Biol 76:101–111

    Article  CAS  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol 89(1):81–88

    CAS  PubMed  Google Scholar 

  • Jejurikar SS, Marcelo CL, Kuzon WM Jr (2002) Skeletal muscle denervation increases satellite cell susceptibility to apoptosis. Plast Reconstr Surg 110(1):160–168

    Article  PubMed  Google Scholar 

  • Jiang C, Wen Y, Kuroda K, Hannon K, Rudnicki MA, Kuang S (2014) Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy. Dis Model Mech 7(8):997–1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34

    CAS  PubMed  Google Scholar 

  • Kelly AM (1978) Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat Rec 190(4):891–903

    Article  CAS  PubMed  Google Scholar 

  • Kottlors M, Kirschner J (2010) Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 340(3):541–548

    Article  PubMed  Google Scholar 

  • Kovanen V, Suominen H, Risteli J, Risteli L (1988) Type IV collagen and laminin in slow and fast skeletal muscle in rats--effects of age and life-time endurance training. Coll Relat Res 8(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuschel R, Yablonka-Reuveni Z, Bornemann A (1999) Satellite cells on isolated myofibers from normal and denervated adult rat muscle. J Histochem Cytochem 47(11):1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Larsson L, Ansved T (1995) Effects of ageing on the motor unit. Prog Neurobiol 45(5):397–458

    Article  CAS  PubMed  Google Scholar 

  • Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794

    Article  CAS  PubMed  Google Scholar 

  • Lepper C, Ta P, Fan C-M (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Niu A, Chen S-E, Li Y-P (2011) Beta3-integrin mediates satellite cell differentiation in regenerating mouse muscle. FASEB J 25(6):1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S (2012) Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development 139(16):2857–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukjanenko L, Jung MJ, Hegde N, Perruisseau-Carrier C, Migliavacca E, Rozo M, Karaz S, Jacot G, Schmidt M, Li L, Metairon S, Raymond F, Lee U, Sizzano F, Wilson DH, Dumont NA, Palini A, Fassler R, Steiner P, Descombes P, Rudnicki MA, Fan CM, von Maltzahn J, Feige JN, Bentzinger CF (2016) Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med 22(8):897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. elife 4:e04885

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Ba L, Grimes B, Keller C, Van Zant G, Campbell KS, Ka E, Dupont-Versteegden EE, Ca P (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138(17):3657–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JR, Rodino-Klapac LR (2016) Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res 26(5):513–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, FH F, Moreland MS, Huard J (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82(1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161

    Article  CAS  PubMed  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067

    Article  CAS  PubMed  Google Scholar 

  • Mounier R, Chretien F, Chazaud B (2011) Blood vessels and the satellite cell niche. Curr Top Dev Biol 96:121–138

    Article  CAS  PubMed  Google Scholar 

  • Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30(2):243–252

    Article  CAS  PubMed  Google Scholar 

  • Murphy MM, Ja L, Mathew SJ, Da H, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK (2007) Delayed angiogenesis and VEGF production in CCR2−/− mice during impaired skeletal muscle regeneration. Am J Physiol Regul Integr Comp Physiol 293(2):R651–R661

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Sinha I, Tan KY, Rosner B, Dreyfuss JM, Gjata O, Tran P, Shoelson SE, Wagers AJ (2016) Age-associated NF-kappaB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging 8(11):2871–2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS (2010) Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 337(1):29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallafacchina G, François S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4(2):77–91

    Article  CAS  PubMed  Google Scholar 

  • Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15(5):867–877

    Article  PubMed  CAS  Google Scholar 

  • Philippou A, Halapas A, Maridaki M, Koutsilieris M (2007) Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Neuronal Interact 7(3):208–218

    CAS  PubMed  Google Scholar 

  • Polesskaya A, Seale P, Ma R (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113(7):841–852

    Article  CAS  PubMed  Google Scholar 

  • Pretheeban T, Lemos DR, Paylor B, Zhang RH, Rossi FM (2012) Role of stem/progenitor cells in reparative disorders. Fibrogenesis Tissue Repair 5(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20(10):1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarta M, Brett JO, DiMarco R, De Morree A, Boutet SC, Chacon R, Gibbons MC, Garcia VA, Su J, Shrager JB, Heilshorn S, Rando TA (2016) An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 34(7):752–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157(5):851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Rhoads RP, Johnson RM, Rathbone CR, Liu X, Temm-Grove C, Sheehan SM, Hoying JB, Allen RE (2009) Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway. Am J Physiol Cell Physiol 296(6):C1321–C1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148(12):112–125

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510(7505):393–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblatt JD (1992) A time course study of the isometric contractile properties of rat extensor digitorum longus muscle injected with bupivacaine. Comp Biochem Physiol Comp Physiol 101(2):361–367

    Article  CAS  PubMed  Google Scholar 

  • Rozo M, Li L, Fan CM (2016) Targeting beta1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 22(8):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16(2):171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, Shkreli M, Delp S, Pomerantz JH, Artandi SE, Blau HM (2010) Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143(7):1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278(15):12601–12604

    Article  CAS  PubMed  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  • Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, Moore MM, Bruce CJ, Greason KL, Suri RM, Khosla S, Miller JD, Bergen HR III, LeBrasseur NK (2016) Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab 23(6):1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Hayashi S, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Yamamoto H (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 314(17):3232–3244

    Article  CAS  PubMed  Google Scholar 

  • Serrano AL, Mann CJ, Vidal B, Ardite E, Perdiguero E, Munoz-Canoves P (2011) Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 96:167–201

    Article  CAS  PubMed  Google Scholar 

  • Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D (2010) Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS One 5(10):e13307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shvartsman D, Storrie-White H, Lee K, Kearney C, Brudno Y, Ho N, Cezar C, McCann C, Anderson E, Koullias J, Tapia JC, Vandenburgh H, Lichtman JW, Mooney DJ (2014) Sustained delivery of VEGF maintains innervation and promotes reperfusion in ischemic skeletal muscles via NGF/GDNF signaling. Mol Ther 22(7):1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, Turner NJ, Weber DJ, Simpson TW, Wyse A, Brown EH, Dziki JL, Fisher LE, Brown S, Badylak SF (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6(234):234ra258

    Article  CAS  Google Scholar 

  • Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 89(10):5245–5255

    Article  CAS  PubMed  Google Scholar 

  • Snijders T, Verdijk LB, van Loon LJ (2009) The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 8(4):328–338

    Article  PubMed  Google Scholar 

  • Sonnet C, Lafuste P, Arnold L, Brigitte M, Poron F, Authier FJ, Chretien F, Gherardi RK, Chazaud B (2006) Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci 119(Pt 12):2497–2507

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardi M, Ballestar E, Gonzalez S, Serrano AL, Perdiguero E, Munoz-Canoves P (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321

    Article  CAS  PubMed  Google Scholar 

  • Summan M, Warren GL, Mercer RR, Chapman R, Hulderman T, Van Rooijen N, Simeonova PP (2006) Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol 290(6):R1488–R1495

    Article  CAS  PubMed  Google Scholar 

  • Tang AH, Rando TA (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33(23):2782–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, Hattori A, Ikeuchi Y, Allen RE, Mo M (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290(6):C1487–C1494

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi R, Sankoda Y, Anderson JE, Sato Y, Mizunoya W, Shimizu N, Suzuki T, Yamada M, Rhoads RP Jr, Ikeuchi Y, Allen RE (2009) Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am J Physiol Cell Physiol 297(2):C238–C252

    Article  CAS  PubMed  Google Scholar 

  • Thomas K, Engler AJ, Meyer GA (2015) Extracellular matrix regulation in the muscle satellite cell niche. Connect Tissue Res 56(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20(10):1182–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troy A, Cadwallader AB, Fedorov Y, Tyner K, Tanaka KK, Olwin BB (2012) Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38alpha/beta MAPK. Cell Stem Cell 11(4):541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, Montemurro F, Tedesco FS, Blaauw B, Cossu G, Vozzi G, Ta R, Bonaldo P (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun 4(May):1964–1964

    PubMed  PubMed Central  Google Scholar 

  • Wagatsuma A, Sakuma K (2013) Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal 2013:593267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner KR, Lechtzin N, Judge DP (2007) Current treatment of adult Duchenne muscular dystrophy. Biochim Biophys Acta 1772(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT (2016) Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ Res 118(7):1125–1141; discussion 1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Thorlacius H (2005) Mast cell-derived tumour necrosis factor-alpha mediates macrophage inflammatory protein-2-induced recruitment of neutrophils in mice. Br J Pharmacol 145(8):1062–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren GL, O'Farrell L, Summan M, Hulderman T, Mishra D, Luster MI, Kuziel WA, Simeonova PP (2004) Role of CC chemokines in skeletal muscle functional restoration after injury. Am J Physiol Cell Physiol 286(5):C1031–C1036

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim JS (2012) The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res 26(6):1724–1729

    Article  PubMed  Google Scholar 

  • Yamaguchi M, Watanabe Y, Ohtani T, Uezumi A, Mikami N, Nakamura M, Sato T, Ikawa M, Hoshino M, Tsuchida K, Miyagoe-Suzuki Y, Tsujikawa K, Takeda S, Yamamoto H, Fukada S (2015) Calcitonin receptor signaling inhibits muscle stem cells from escaping the quiescent state and the niche. Cell Rep 13(2):302–314

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Price F, Ma R (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, Kohn DB, Nakano A, Nelson SF, Miceli MC, Spencer MJ, Pyle AD (2016) A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18(4):533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Handschin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinulovic, I., Furrer, R., Handschin, C. (2017). Plasticity of the Muscle Stem Cell Microenvironment. In: Birbrair, A. (eds) Stem Cell Microenvironments and Beyond. Advances in Experimental Medicine and Biology, vol 1041. Springer, Cham. https://doi.org/10.1007/978-3-319-69194-7_8

Download citation

Publish with us

Policies and ethics