Skip to main content

Mycoremediation: An Eco-friendly Approach for Degradation of Pesticides

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Pesticides are toxic and recalcitrant in nature and cause contamination in natural ecosystems and thereafter health problems in ultimate consumers. The residual effects of pesticides include carcinogenicity, mutagenicity, reproductive toxicity, and various other health problems. Currently there are a number of possible mechanisms for the cleanup of pesticides in soil, such as chemical treatment, volatilization, and incineration, but for both economic and ecological reasons, biological degradation has become an increasingly popular alternative for the treatment of pesticide residues in soil and water. Mycoremediation plays pivotal role in the treatment of various organic and inorganic pollutants. Fungi can easily colonize and utilize pesticides as nutrient source and degrade or fragment them into nontoxic simpler forms. Fungi are great biodegrades and the resultant compost has been used to enhance the growth of plants as well as bioremediation activity in the environment. A number of fungi (Pleurotus ostreatus, Rhizoctonia solani, Mucor, Aspergillus, Rhizopus arrhizus, Phanerochaete chrysosporium, Trametes hirsuta, Lentinus edodes, Trametes versicolor, Bjerkandera adusta, Lentinula edodes, Irpex lacteus, Agaricus bisporus, Pleurotus tuber-regium, Pleurotus pulmonarius, Trichoderma harzianum) have been reported till date involved in degradation of various pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed M, Ismail S, Mabrouk S (1998) Residues of some chlorinated hydrocarbon pesticides in rain water, soil and ground water, and their influence on some soil microorganisms. Environ Int 24:665–670

    Article  CAS  Google Scholar 

  • Amakiri MA (1982) Microbial degradation of soil applied herbicides. Nij J Microbiol 2:17–21

    Google Scholar 

  • Anderson JPE, Lichtenstein EP (1971) Effect of nutritional factors on DDT degradation by Mucor alternans. Can J Microbiol 17:1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Awasthi N, Manickam N, Kumar A (1997) Biodegradation of endosulfan by a bacterial co-culture. Bull Environ Contam Toxicol 59:928–934

    Article  CAS  PubMed  Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63:389–394

    Article  CAS  Google Scholar 

  • Bending MP, Anderron A, Ander P, Stenström J, Torstensson L (2001) Establishment of white-rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation system intended for degradation of pesticides. World J Microbiol Biotechnol 17:627–633

    Article  Google Scholar 

  • Bending G, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao TS (2012) Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turk J Biol 36:561–567

    CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT (1,1,1-trichloro-2, 2-bis (4-chlorophenyl) ethane) by white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 4706:1434–1436

    Article  Google Scholar 

  • Bumpus JA, Powers RH, Sun T (1993) Biodegradation of DDE (1,1-dichloro- 2,2-bis(4-chlorophenyl)ethene) by Phanerochaete chrysosporium. Mycol Res 97:85–98

    Article  Google Scholar 

  • Carvalho MB, Tavares S, Medeiros J, Núñez O, Gallart-Ayala H, Leitão MC, Galceran MT, Hursthouse A, Pereira CS (2011) Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions. J Hazard Mater 198:133–142

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty SK, Bhattacharyya A (1991) Degradation of butachlor by two soil fungi. Chemosphere 23:99–105

    Article  CAS  Google Scholar 

  • Chen YL, Wu TC (1978) Degradation of herbicide butachlor by soil microbes. J Pestic Sci 3:411–417

    Article  CAS  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-Trichloro-2-Pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7:e47205. https://doi.org/10.1371/journal.pone.0047205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards CA (1986) In: Van Hofsten B, Eckstrom G (eds) Agrochemicals as environmental pollutants. In control of pesticide applications and residues in food. A guide and directory. Swedish Science Press, Uppsala

    Google Scholar 

  • El Zorgani GA, Omer MEH (1974) Metabolism of endosulfan isomers by Aspergillus niger. Bull Environ Cont Toxicol 12:182–185

    Article  Google Scholar 

  • Elguetaa S, Santosa C, Limab N, Diezc MC (2016) Atrazine dissipation in a biobed system inoculated with immobilized white-rot fungi. Arch Agron Soil Sci 62:1451–1461

    Article  Google Scholar 

  • Engst R, Kujawa M (1968) Enzymatischer addau des DDT durch schimmelplize. 3. Mitt. Darstellung des 2,2-bis (p-chlorophenyl)-acetaldehyds (DDHO) and seine Bedeutung im abbaucyclus. Nahrung 12:783–785

    Article  CAS  Google Scholar 

  • Gan J, Koskinen WC (1998) Pesticide fate and behaviour in soil at elevated concentrations. In: Kearney PC (ed) Pesticide remediation in soils and water. John Wiley & Sons, Chichester, pp 59–84

    Google Scholar 

  • Ganash MA, Abdel Ghany TM, Reyad AM (2016) Pleurotus ostreatus as a biodegradator for organophosphorus insecticide malathion. J Environ Anal Toxicol 6:369

    Google Scholar 

  • Graeme M (2005) Resistance Management - Pesticide Rotation. Ontario Ministry of Agriculture, Food and Rural Affairs

    Google Scholar 

  • Gupta P (2004) Pesticide exposure-Indian scene. J Dent Technol 198:118–119

    Google Scholar 

  • Hasan HAH (1999) Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44:77–84

    Article  CAS  Google Scholar 

  • Huang Y, Xi Z, Luan S (2007) Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Sci Total Environ 385:235–241

    Article  CAS  PubMed  Google Scholar 

  • Joshi DK, Gold MH (1994) Oxidation of dibenzo-p-dioxin by lignin peroxidase from the basidiomycete Phanerochaete chrysosporium. Biochemistry 33:10969–10976

    Article  CAS  PubMed  Google Scholar 

  • Juhler R, Sorensen S, Larsen L (2001) Analysing transformation products of herbicide residues in environmental samples. Water Res 35:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Katayama A, Mastumara F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 35:326–332

    Article  CAS  Google Scholar 

  • Kaufman DD, Blake J (1970) Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80

    Article  CAS  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soils and water, Wiley series in agrochemicals and plant protection. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kim YH, Ahn JY, Moon SH, Lee J (2005) Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60:1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Kookana RS, Di HJ, LAG AYLMORE (1998) Degradation rates of eight pesticides in surface and subsurface soils under laboratory and field conditions. Soil Sci 163:404–411

    Article  Google Scholar 

  • Krzysko-Lupicka T, Stroff W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Environ Microbiol 48:549–552

    CAS  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathway utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo W, Regan R (1999) Removal of pesticides from rinsates by adsorption using agricultural residuals as medium. J Sc Health 34:431–447

    Google Scholar 

  • Lee JK (1978) A study on degradation of butachlor by a soil fungus Chaetomium globosum. J Korean Agric Chem Soc 21:1–10

    CAS  Google Scholar 

  • Lipok J, Dombrovska L, Wieczorek P, Kafarski P (2003) The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticide in air, plant, soil and water system, Proceeding of the XII symposium pesticide chemistry. Piacenza.

    Google Scholar 

  • Liu YY, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens R (1976) Degradation of endosulfan by soil microorganisms. Appl Environ Microbiol 31:853–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mastumara F, Boush GM (1968) Degradation of insecticides by soil fungus Trichoderma viride. J Econ Entomol 61:610–612

    Article  Google Scholar 

  • Masaphy S, Levanon D, Vaya J, Henis Y (1993) Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-Chloro-4- Ethylamino-6-(1-Hydroxyisopropyl)Amino-1,3,5-Triazine. Appl Environ Microbiol 59:4342–4346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miles JRW, Moy P (1979) Degradation of endosulfan and its metabolites by a mixed culture of soil microorganisms. Bull Environ Contam Toxicol 23:13–19

    Article  CAS  PubMed  Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mougin C, Laugero C, Asther M, Chaplain V (1997) Biotransformation of s-triazine herbicides and related degradation products in liquid culture by the white rot fungus Phanerochaete chrysosporium. Pest Sci 49:169–177

    Article  CAS  Google Scholar 

  • Mukherjee I, Gopal K (1994) Degradation of β-endosulfan by Aspergillus niger. Toxicol and Environ Chem 46:217–221

    Article  CAS  Google Scholar 

  • Nerud F, Baldrian J, Gabriel J, Ogbeifun D (2003) Nonenzymic degradation and decolorization of recalcitrant compounds. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academis Publishers, Dordrecht, pp 29–48

    Google Scholar 

  • Obojska A, Ternana NG, Lejczak B, Kafarski P, McMullan P (2002) Organophosphate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omar SA (1998) Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation 9:327–336

    Article  CAS  PubMed  Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Ramadevi C, Nath MM, Prasad MP (2012) Mycodegradation of malathion by a soil fungal isolate, Aspergillus niger. Int J Basic and Appl Chemical Sc 2:108–115

    Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiol 146:405–413

    Article  CAS  Google Scholar 

  • Ryu WR, Shim SH, Jang MY, Jeon YJ, KK O, Cho MH (2000) Biodegradation of pentachlorophenol by white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioprocess Eng 5:211–214

    Article  CAS  Google Scholar 

  • Shetty PK, Mitra J, Murthy NBK, Namitha KK, Savitha KN, Raghu K (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC 1384. Curr Sci 79:1381–1383

    CAS  Google Scholar 

  • Singh BK, Kuhad RC (1999) Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28:238–241

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146

    Article  CAS  Google Scholar 

  • Talaro KP, Talaro A (2002) Foundations in microbiology, 4th edn. MGraw Hill, New York

    Google Scholar 

  • Tekere M, Ncube I, Read J, Zvauya R (2002) Biodegradation of the organochlorine pesticide lindane bya a sub-tropical white rot fungus in batch and packed bed bioreactor systems. Environ Technol 23:199–206

    Article  CAS  PubMed  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual. British Crop Protection Council, Surrey

    Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi belonging to genus Phlebia. FEMS Microbiol Lett 314:40–146

    Article  Google Scholar 

  • Zboinska E, Lejczak B, Kafarski P (1992) Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Appl Environ Microbiol 58:2993–2999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int Environ and Pol 18:423–433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Bhandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhandari, G. (2017). Mycoremediation: An Eco-friendly Approach for Degradation of Pesticides. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68957-9_7

Download citation

Publish with us

Policies and ethics