Skip to main content

The Iron Formations of the South American Platform

  • Chapter
  • First Online:
Geology of Southwest Gondwana

Abstract

The Precambrian of South America contains world-class iron formation (IF) occurrences of Archean, Paleo-, and Neoproterozoic age preserved in its different cratonic fragments and surrounding collisional belts developed during their amalgamation along a protracted Neoproterozoic to Early Paleozoic event known as the Brasiliano-Pan-African collage that formed the southwest part of the Gondwana supercontinent. In the domain of South America located west of the Transbrasiliano Lineament, most Archean IFs are spatially and genetically associated with volcanosedimentary sequences and crop out as discontinuous tectonic fragments of relatively small dimensions and seldom with economic concentrations of iron. An exception is the Carajás mineral Province in the Amazon Craton, where voluminous IFs from the Neoarchean Carajás Formation host giant high-grade iron ore deposits associated with the recurrent circulation of fluids of magmatic origin. Giant ore deposits of this metal are also present in the Paleoproterozoic Imataca granulite facies Complex in the Transamazon/Guianas Province of the Amazon Craton, but the information available about their primary geological setting, age, and mineralization processes is very limited. In the domain located east of the Transbrasiliano Lineament, on the other hand, the São Francisco Craton stands out with large Paleoproterozoic platform sequences containing banded IF (BIF) deposits, including some of the most important high-grade iron-ore deposits in the world. These are hosted by the Siderian Cauê Formation of the Minas Supergroup in the well-known Quadrilátero Ferrífero Mining District, and found also in the north–south-trending Orosirian-Statherian Serra da Serpentina IF, all IFs having been deposited along the eastern coast of an Archean protocraton. The Nico Pérez Terrane of southern Brazil and Uruguay, assumed to be a fragment of the São Francisco-Congo Craton, also preserves relics of BIF-bearing Paleoproterozoic platform successions. These BIFs contain significant but sub-economic iron ore resources as a result of a weak secondary iron enrichment and their relatively small size. The Paleoproterozoic Río de la Plata Craton lacks an Archean core and does not show any evident link with the other cratons of the South American Platform. In contrast with the other terranes, it hosts only small, scarce occurrences of BIFs associated with metavolcanosedimentary sequences. Neoproterozoic BIFs associated with Fe-rich clastic sediments are widespread in the Cryogenian sediments of the mobile schist belts, but economic deposits are few. The best-known examples of sequences hosting Neoproterozoic BIFs include the Jacadigo Group of Brazil and Bolivia, and the Yerbal Formation of Uruguay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alkmim FF, Marshak S (1998) Transamazonian orogeny in the southern Sao Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambr Res 90:29–58

    Google Scholar 

  • Almeida FFM (1971) Geochronological division of the Precambrian of South America. Revista Brasileira de Geociências 1:13–21

    Google Scholar 

  • Almeida FFM (1977) O Craton de Sao Francisco. Revista Brasileira de Geociências 7:349–364

    Google Scholar 

  • Almeida FFM, Hasui Y (eds) (1984) O Pré-Cambriano do Brasil. São Paulo, Blücher Ltda., p 378 p

    Google Scholar 

  • Almeida FFM et al (1981) Brazilian structural provinces: an introduction. Earth Sci Rev 17(1):1–29

    Article  Google Scholar 

  • Almeida-Abreu PA et al (1989) Estratigrafia, faciologia e tectônica do Supergrupo Espinhaço na região de Serro—Conceição do Mato Dentro, Minas Gerais, Brasil. Zbl Geol Paläontol 5:857–873

    Google Scholar 

  • Alvarenga CJS, Trompette R (1993) Evolução tectônica Brasiliana da faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências 23:18–30

    Google Scholar 

  • Aubet NR et al (2014) Ediacaran in Uruguay: facts and controversies. J S Am Earth Sci 55:43–57

    Article  Google Scholar 

  • Avelar VG et al (1999) O Magmatismo arqueano da região de Tucumã—Província Mineral de Carajás: novos resultados geocronológicos. Revista Brasileira de Geociências 29(4):453–460

    Google Scholar 

  • Babinski M et al (1995) The Pb/Pb age of Minas Supergroup carbonate rocks, Quadrilatero Ferrifero, Brazil, and its implications to the correlation with BlFs from South Africa and Australia. Precambr Res 72:235–245

    Article  Google Scholar 

  • Babinski M et al (2012) Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: age, provenance and correlations with the São Francisco craton and West Congo belt. Gondwana Res 21(2):451–465

    Article  Google Scholar 

  • Baltazar OF, Zucchetti M (2007) Lithofacies associations and structural evolution of the Archean Rio das Velhas Greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the setting of gold deposits. Ore Geol Rev 32:471–499

    Article  Google Scholar 

  • Barbosa JSF, Sabaté P (2002) Geological features and the Paleoproterozoic collision of four Archean crustal segments of the São Francisco Craton, Bahia, Brazil. A synthesis. An Acad Bras Ciênc 74(2):343–359

    Article  Google Scholar 

  • Barbosa JSF, Sabaté P (2004) Archean and Palaeoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambr Res 133:1–27

    Article  Google Scholar 

  • Barley ME et al (1998) The 2.72–2.60 Ga bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precambr Res 91:65–90

    Article  Google Scholar 

  • Barley ME et al (1999) Hydrothermal origin for the 2 billion year old Mount Tom Price giant iron ore deposit, Hamersley province, Western Australia. Miner Deposita 34:784–789

    Article  Google Scholar 

  • Barreto CJS et al (2009) Magmatismo eo-riaciano (2.26 Ga) na porção norte do Bloco Amapá, região central do Amapa: nova evidência e implicações geodinâmicas. In SBG, Simpósio de Geologia da Amazônia, 11, Resumos, CD-ROM

    Google Scholar 

  • Barreto CJS et al (2013) Paleoproterozoic granitoids from the northern limit of the Archean Amapá block (Brazil), Southeastern Guyana Shield: Pb–Pb evaporation in zircons and Sm–Nd geochronology. J S Am Earth Sci 45:97–116

    Article  Google Scholar 

  • Barrote VR (2015) A sequência portadora de formações ferríferas de Guanhães, Minas Gerais, Brasil. M.Sc. thesis, Universidade Federal de Minas Gerais, Belo Horizonte

    Google Scholar 

  • Barrote VR et al (2017) As formações ferríferas bandadas proterozóicas de Guanhães, borda sudeste do Cráton São Francisco, Brasil: evidências de contaminação detrítica. Geologia USP, Série Científica 17(2):303–324

    Article  Google Scholar 

  • Basei MAS et al (2006) Provenance and depositional age of the Dom Feliciano Belt Supracrustal units, Brazil—Uruguay: correlations with SW Africa. V South American symposium on isotope geology Punta del Este Uruguay. Short papers, pp 45–48

    Google Scholar 

  • Bastos-Leal LR (1998) Geocronologia U/Pb (Shrimp), 207Pb/206Pb, Rb/Sr, Sm/Nd e K/Ar dos terrenos granito-greenstone do Bloco Gavião: Implicações para a evolução Arqueana e Paleoproterozóica do Cráton do São Francisco. Brasil. Ph.D. thesis, University of São Paulo, Brazil

    Google Scholar 

  • Bastos-Leal LR et al (1997) Crustal evolution of Gavião block of the São Francisco Craton: a geochronological study with U–Pb, Pb–Pb, Sm–Nd, Rb–Sr and K–Ar. Extended Abstracts. South Am Symp Isot Geol 2:161–162

    Google Scholar 

  • Bekker A et al (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  Google Scholar 

  • Beukes NJ (1980) Lithofacies and stratigraphy of the Kuruman and Griquatown Iron-formations, northern Cape Province, South Africa. Trans Geol Soc S Afr 83:69–86

    Google Scholar 

  • Beukes NJ (1983) Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In: Trendall AF, Morris RC (eds) Iron-formation: facts and problems. Elsevier, Amsterdam, pp 131–209

    Chapter  Google Scholar 

  • Beukes NJ et al (2002) The geology and genesis of high-grade hematite iron ore deposits. Iron Ore 2002:23–29

    Google Scholar 

  • Blanco G et al (2009) Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): implications for the paleogeographic evolution of southwestern Gondwana. Precambr Res 171:57–73

    Article  Google Scholar 

  • Borges JO (2012) Geologia e evolução metalogenética do minério de manganês da mina Lagoa D’anta, subdistrito ferro-manganesífero de Caetité-Licínio de Almeida, Bahia. M.Sc. thesis, Universidade Federal da Bahia, 216 p

    Google Scholar 

  • Borges JO et al (2015) Structural framework of rocks of the Lagoa D’anta mine area, iron-manganese Urandi-Caetité-Licínio de Almeida District, Bahia, Brasil. Braz J Geol 45(2):173–192

    Article  Google Scholar 

  • Bossi J (1963) El yacimiento de hierro del Arroyo Valentines, Florida, Uruguay; Parte I. La mena ferrífera. Boletim Sociedade Brasileira de Geología 12:109–133

    Google Scholar 

  • Bossi J, Ferrando L (2001) Carta Geologica del Uruguay, Escala 1:500.000. Version 2.0 Digital. Facultad de Agronomía, Montevideo

    Google Scholar 

  • Bossi J, Gaucher C (2004) The Cuchilla Dionisio Terrane, Uruguay: an allochthonous block accreted in the Cambrian to SW-Gondwana. Gondwana Res 7:661–674

    Article  Google Scholar 

  • Bossi J, Gaucher C (2014) Formación Valentines. In: Bossi J, Gaucher C (eds) Geología del Uruguay—Tomo 1: Predevónico. pp 171–189

    Google Scholar 

  • Bossi J, Navarro R (1998) Las formaciones ferríferas de Uruguay: su significado económico y tectono-estratigráfico. Abstracts of the X Congreso Latinoamericano Geologia—VI Congreso Argentino Geologia Economica, Buenos Aires

    Google Scholar 

  • Bossi J, Umpierre M (1968) La petrología de la formación ferrífera Valentines, Departamento de Florida, República Oriental del Uruguay. Unpublished report, Universidad de la República, Facultad de Química, Sector Geoquímica, Montevideo, 102 p

    Google Scholar 

  • Bossi J et al (1965) Predevoniano en el Uruguay. Boletín Facultad de Agronomía Nº 78. Montevideo, Uruguay

    Google Scholar 

  • Boström K (1973) The origin and fate of ferromanganoan active ridge sediments. Stockholm Contrib Geol 27:147–243

    Google Scholar 

  • Brito Neves BB et al (2000) Tectonic history of the Borborema Province. In: Cordani UG et al (eds) Tectonic evolution of South America. 31st International Geological Congress, Rio de Janeiro, pp 151–182

    Google Scholar 

  • Brito Neves BB et al (2014) The Brasiliano collage in South America: a review. Braz J Geol 44(3):493–518

    Article  Google Scholar 

  • Carneiro MA (1992) O Complexo metamórfico Bonfim Setentrional (Quadrilátero Ferrífero, MG): Litoestratigrafia e evolução geológica de um segmento de crosta continental do Arqueano. Ph.D. thesis, Instituto de Geociências, Universidade de São Paulo. São Paulo, Brasil, 233 p

    Google Scholar 

  • Chemale F Jr et al (1994) The tectonic evolution of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambr Res 65:25–54

    Article  Google Scholar 

  • Chisonga BC et al (2012) Nature and origin of the protolith succession to the Paleoproterozoic Serra do Navio manganese deposit, Amapá Province, Brazil. Ore Geol Rev 47:59–76

    Article  Google Scholar 

  • Cingolani CA (2011) The Tandilia system of Argentina as southern extension of the Río de la Plata craton: an overview. Int J Earth Sci 100:221–242

    Article  Google Scholar 

  • Cordani UG et al (2009) The position of the Amazonian Craton in supercontinents. Gondwana Res 15:396–407

    Article  Google Scholar 

  • Costa LP (2007) Caracterização das sequências metavulcanossedimentares da porção leste da Província Mineral Carajás, Pará. M.Sc. thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil, 113 p

    Google Scholar 

  • Cox GM et al (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249

    Article  Google Scholar 

  • CPRM (Companhia de Pesquisa de Recursos Minerais) (2004) http://geosgb.cprm.gov.br/ (last accessed 24.8.2017)

  • Cunha JC et al (1996) Idade dos greenstone belts e dos terrenos TTG’s associados da região de Brumado, centro oeste do Cráton do São Francisco (Bahia-Brasil). SBG, Congresso Brasileiro de Geologia 39, Anais, pp 67–70

    Google Scholar 

  • Danderfer Filho A et al (2009) New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton—Brazil. Precambr Res 170:116–128

    Article  Google Scholar 

  • Del’Arco JO et al (1982) Geologia. Projeto RADAMBRASIL Folha SE.21 Corumbá. Rio de Janeiro. Levantamento de Recursos Naturais 27:25–160

    Google Scholar 

  • Delor C et al (2003) Transamazonian crustal growth and reworking as revealed by the 1:500,000-scale geological map of French Guiana, 2nd edn. Géologie de la France 2–4:5–57

    Google Scholar 

  • Dorr JVN II (1964) Supergene iron ores of Minas Gerais, Brazil. Econ Geol 59:1203–1240

    Google Scholar 

  • Dorr JVN II (1965) Nature and origin of the high-grade hematite ores of Minas Gerais, Brazil. Econ Geol 60:1–46

    Google Scholar 

  • Dorr JVN II (1969) Physiographic, stratigraphic and structural development of the Quadrilatero Ferrifero, Minas Gerais. U.S. geological survey professional paper 641-A, 110 p

    Google Scholar 

  • Dorr JVN II, Barbosa ALM (1963) Geology and ore deposits of the Itabira district Minas Gerais, Brazil. U.S. geological survey professional paper 341-C, 110 p

    Google Scholar 

  • Duuring P, Hagemann S (2013a) Genesis of superimposed hypogene and supergene Fe ore bodies in BIF at the Madoonga deposit, Yilgarn Craton, Western Australia. Miner Deposita 48:371–395

    Article  Google Scholar 

  • Duuring P, Hagemann S (2013b) Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia. Miner Deposita 48:341–370

    Article  Google Scholar 

  • Ellis J (1998) The Precambrian supracrustal rocks of the “Isla Cristalina de Rivera” in northern Uruguay and their ore deposits: definition of a new lithostratigraphic unit (“Vichadero Formation”) and a contribution to the genesis of banded iron-formation and manganese-formation. Ph.D. thesis, Ruprecht-Karls-Universitat, Heidelberg, 181 p

    Google Scholar 

  • Embrapa Pantanal, Laboratório de Geoprocessamento, Mapa de Geologia, http://www.cpap.embrapa.br/agencia/001bdado1.htm (last accessed 25.8.2017)

  • Evans BW, Ghiorso MS (1995) Thermodynamics and petrology of cummingtonite. Am Miner 80:649–663

    Article  Google Scholar 

  • Figueiredo e Silva RC et al (2008) A hydrothermal origin for the jaspilite-hosted giant Sierra Norte deposits in the Carajas Mineral Province, Pará State, Brazil. Econ Geol 15:255–290

    Google Scholar 

  • Figueiredo e Silva RC et al (2013) Hydrothermal fluid processes and evolution of the giant Serra Norte jaspilite-hosted iron ore deposits, Carajás Mineral Province, Brazil. Econ Geol 108:739–779

    Google Scholar 

  • Frei R et al (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461(7261):250–253

    Article  Google Scholar 

  • Frei R et al (2013) Fluctuations in late Neoproterozoic atmospheric oxidation-Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Res 23:797–811

    Article  Google Scholar 

  • Gair JE (1962) Geology and ore deposits of the Nova Lima and Rio Acima Quadrangles, Minas Gerais, Brazil. U.S. geological survey professional paper 341-A, 65 p

    Google Scholar 

  • Gaucher C (2000) Sedimentology, palaeontology and stratigraphy of the Arroyo del Soldado Group (Vendian to Cambrian, Uruguay). Beringeria 26:1–120

    Google Scholar 

  • Gaucher C, Schipilov A (1994) Formaciones de hierro bandeadas del Vendiano del Uruguay. Paleociencias del Uruguay (Serie Didáctica) 2:3–5 (Facultad de Ciencias, Montevideo, Uruguay)

    Google Scholar 

  • Gaucher C et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambr Res 120:241–278

    Article  Google Scholar 

  • Goodwin AM (1962) Structure, stratigraphy, and origin of iron formations, Michipicoten Area, Algoma District, Ontario, Canada. Geol Soc Am Bull 73(5):561–586

    Article  Google Scholar 

  • Goodwin AM (1991) (reprinted in 2016) Precambrian geology: the dynamic evolution of the continental crust. Academic Press, Harcourt Brace Jovanovich Publishers, Toronto

    Google Scholar 

  • Gourcerol B et al (2016) Depositional setting of Algoma-type banded iron formation. Precambr Res 281:47–79

    Article  Google Scholar 

  • Graf J et al (1994) Rare earth element evidence of origin and depositional environment of Late Proterozoic ironstone beds and manganese-oxide deposits, SW Brazil and SE Bolivia. J S Am Earth Sci 7:115–133

    Article  Google Scholar 

  • Gross GA (1980) A classification of iron-formation based on depositional environments. Can Miner 18:215–222

    Google Scholar 

  • Gross GA (1983) Tectonic systems and the deposition of iron-formation. Precambr Res 20:171–187

    Article  Google Scholar 

  • Grossi-Sad JH et al (1997) Geologia da Folha Conceição do Mato Dentro. In: Grossi-Sad JH et al (eds) Projeto Espinhaço CD-ROM (textos, mapas e anexos). COMIG—Companhia Mineradora de Minas Gerais, Belo Horizonte, pp 2533–2693

    Google Scholar 

  • Gruner JW (1930) Hydrothermal oxidation and leaching experiments: their bearing on the origin of Lake Superior hematite-limonite ores: part II. Econ Geol 25:837–867

    Article  Google Scholar 

  • Gruner JW (1937) Hydrothermal leaching of iron ores of the Lake superior type—a modified theory. Econ Geol 32:121–130

    Article  Google Scholar 

  • Guild PW (1957) Geology and mineral resources of the Congonhas district, Minas Gerais, Brazil. US geological survey professional paper 290, 90 p

    Google Scholar 

  • Guillemain C (1910a) Lagerstätten in der Republik Uruguay. Bergwirtschaftliche Mitteilung 1:189–192

    Google Scholar 

  • Guillemain C (1910b) Der erste Versuch einer geologischen Karte von Uruguay. Dr. A. Petermanns Mitteilungen aus Justus Perthes’ geographischer Anstalt 56, p 306

    Google Scholar 

  • Hagemann SG, Angerer T, Duuring P, Rosière CA, Figueiredo e Silva RC, Lobato L, Hensler AS, Walde DHG (2016) BIF-hosted iron mineral system: a review. Ore Geology Reviews 76:317–359

    Google Scholar 

  • Halls HC et al (2001) Magnetic studies and U–Pb geochronology of the Uruguayan dyke swarm, Río de la Plata craton, Uruguay: paleomagnetic and economic implications. J S Am Earth Sci 14:349–361

    Article  Google Scholar 

  • Hartmann LA et al (2001) Archean crust in the Rio de la Plata Craton, Uruguay—SHRIMP U–Pb zircon reconnaissance geochronology. J S Am Earth Sci 14:557–570

    Article  Google Scholar 

  • Hartmann LA et al (2006) Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U–Pb isotopes. J S Am Earth Sci 20:273–285

    Article  Google Scholar 

  • Heimann A et al (2010) Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth Planet Sci Lett 294:8–18

    Article  Google Scholar 

  • Hensler A-S et al (2015) Hydrothermal and metamorphic fluid-rock interaction associated with hypogene hard iron ore mineralisation in the Quadrilátero Ferrífero, Brazil: implications from in-situ laser ablation ICP-MS iron oxide chemistry. Ore Geol Rev 69:325–351

    Article  Google Scholar 

  • Hensler A-S et al (2017) Iron oxide mineralization at the contact zone between phyllite and itabirite of the Pau Branco deposit, Quadrilátero Ferrífero, Brazil-Implications for fluid-rock interaction during iron ore formation. Econ Geol 112:941–982

    Article  Google Scholar 

  • Hoashi M et al (2009) Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat Geosci 2:301–306

    Article  Google Scholar 

  • Hoffman PF et al (1998) A neoproterozoic snowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans Roy Soc Biol Sci 361:903–915

    Article  Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIF and bugs: evidence for the evolution of the earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Article  Google Scholar 

  • James HL (1954) Sedimentary facies iron formation. Econ Geol 49(3):235–293

    Article  Google Scholar 

  • Johnson CM et al (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal craton. Contrib Miner Petrol 144:523–547

    Article  Google Scholar 

  • Johnson CM et al (2008) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72:151–169

    Article  Google Scholar 

  • Jones JP (1985) The southern border of the Guaporé Shield in western Brazil and Bolivia: an interpretation of its geologic evolution. Precambr Res 28(2):111–135

    Article  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. Section 2.3. In: Schopf JW et al (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  • Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Miner 90:1473–1499

    Article  Google Scholar 

  • Klein C, Beukes NJ (1989) Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol 84:1733–1774

    Article  Google Scholar 

  • Klein C, Beukes NJ (1993) Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada. Econ Geol 88(3):542–565

    Article  Google Scholar 

  • Knauer LG (1990) Evolução geológica do Pré-cambriano da porção centro-oeste da Serra do Espinhaço Meridional e metalogênese associada. M.Sc. thesis. Universidade de Campinas, São Paulo, Brazil, 298 p

    Google Scholar 

  • Knauer LG, Grossi-Sad JH (1997) Geologia da Folha Serro. In: Grossi-Sad JH et al (eds) Projeto Espinhaço em CD-ROM (textos, mapas e anexos). COMIG—Companhia Mineradora de Minas Gerais, Belo Horizonte, pp 2057–2316

    Google Scholar 

  • Konhauser KO et al (2002) Could bacteria have fonned the Precambrian banded iron formations? Geology 30:1079–1082

    Article  Google Scholar 

  • Konhauser KO et al (2005) The potential significance of microbial Fe(III) reduction during deposition of precambrian banded iron formations. Geobiology 3:167–177

    Article  Google Scholar 

  • Konhauser KO et al (in press) Iron formations: a global record of neoarchean to palaeoproterozoic environmental history. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2017.06.012

  • Krapez B et al (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the early palaeoproterozoic brockman supersequence of Western Australia. Sedimentology 50:979–1011

    Article  Google Scholar 

  • Kuchenbecker M et al (2015) Detrital zircon age patterns and provenance assessment for pre-glacial to post-glacial successions of the Neoproterozoic Macaúbas Group, Araçuaí orogen, Brazil. Precambr Res 266:12–26

    Article  Google Scholar 

  • Kuchenbecker M et al (2016) Chemostratigraphy of the lower Bambuí Group, southwestern São Francisco Craton, Brazil: insights on Gondwana paleoenvironments. Braz J Geol 46:145–162

    Article  Google Scholar 

  • Lancaster H (2015) Mineralogy, geochemistry, and genesis of the valentines iron formation, Nico Pérez Terrane, eastern Uruguay, and significance for the redox conditions of early Earth’s oceans. M.Sc. thesis, East Carolina University, 141 p

    Google Scholar 

  • Lascelles D (2002) A new look at old rocks—an alternative model for the origin of in situ iron ore deposits derived from banded iron formation. Proc Iron Ore 2002:1–20

    Google Scholar 

  • Li W et al (2015) Biologically-recycled continental iron: a major component in banded iron formations. Proc Nat Acad Sci 112:8193–8198

    Article  Google Scholar 

  • Litherland M, Bloomfield K (1981) The proterozoic history of eastern Bolivia. Precambr Res 15:157–179

    Article  Google Scholar 

  • Lobato LM et al (2001) Brazil’s premier gold province: part II. Geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner Deposita 36:249–277

    Article  Google Scholar 

  • Lobato LM et al (2005) A mineralização hidrotermal de ferro da Província Mineral de Carajás—Controle estrutural e contexto na evolução metalogenética da provincia. In: Marini OJ et a. (eds) Caracterização de depósitos minerais em distritos mineiros da Amazônia: Departamento Nacional da Produção Mineral (DNPM)/Fundo Setorial Mineral (CT-Mineral/FINEP)/Agência para o Desenvolvimento Tecnológico da Indústria Mineral Brasileira (ADIMB), Brasília, Brazil, pp 25–92

    Google Scholar 

  • Lopes-Silva L et al (2007) Lithological review of the Socorro Quarry, Gandarela Minerios Ltda., Minas Gerais, Brazil: Quarry logs, drilling logs and litho-geochemical model: Internal report, Limelette/Sao Jose da Lapa, 55 p

    Google Scholar 

  • Machado N, Schrank A (1989) Geocronologia U/Pb no Maciço de Piumhi: Resultados Preliminares. Anais symposium Geologia de Minas Gerais, 5th, Belo Horizonte, pp 45–49

    Google Scholar 

  • Machado N et al (1991) UPb geochronology of Archean magmatism and basement reactivation in the Carajás área, Amazon shield, Brazil. Precambr Res 49:329–354

    Article  Google Scholar 

  • Machado N et al (1992) U–Pb geochronology of the Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern Sao Francisco Craton, Brazil. Geol Soc Am Bull 104:1221–1227

    Article  Google Scholar 

  • Machado N et al (1996) Ages of detrital zircon from archean-paleoproterozoic sequences: implications for greenstone belt setting and evolution of a transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet Sci Lett 141:259–276

    Article  Google Scholar 

  • Marinho MM (1991) Le sequence Volcano-Sedimentaire de Contendas Mirante et la Bordure Ocidentale du Bloc de Jequié (Craton du São Francisco, Brésil): um example de transition Archean-Proterozoic. Unpublished Ph.D. thesis, University of Clermont-Ferrand, 257 p

    Google Scholar 

  • Maxwell CH (1972) Geology and ore deposits of the Alegria district, Minas Gerais, Brazil. US geological survey professional paper 341-J, 72 p

    Google Scholar 

  • McLennan S (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • Montgomery CW (1979) Uranium-lead geochronology of the Archean Imataca Series, Venezuelan Guayana Shield. Contrib Miner Petrol 69(2):167–176

    Article  Google Scholar 

  • Moreto CPN et al (2015) Timing of multiple hydrothermal events in the iron oxide–copper–gold deposits of the Southern Copper Belt, Carajás Province, Brazil. Miner Deposita 50:517–546

    Article  Google Scholar 

  • Noce CM et al (1997) Nova subdivisão estratigráfica regional do Grupo Macaúbas na Faixa Araçuaí: O registro de uma bacia Neoproterozóica. Boletim do Núcleo Minas Gerais-Sociedade Brasileira de Geologia 14:29–31

    Google Scholar 

  • Noce CM et al (2005) Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas greenstone belt (Quadrilátero Ferrífero, Brazil): U–Pb zircon dating of volcaniclastic graywackes. Precambr Res 141:67–82

    Article  Google Scholar 

  • Noce CM et al (2007) Evolution of polycyclic basement complexes in the Araçuai Orogen, based on U–Pb SHRIMP data: Implications for Brazil-Africa links in Paleoproterozoic time. Precambr Res 159(1–2):60–78

    Article  Google Scholar 

  • Nogueira ACR et al (2003) Soft-sediment deformation at the Neoproterozoic Puga cap carbonate (southwestern Amazon Craton, Brazil): confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geology 31:613–616

    Article  Google Scholar 

  • Oriolo S et al (2016) The Nico Pérez Terrane (Uruguay): From Archean crustal growth and connections with the Congo Craton to late Neoproterozoic accretion to the Río de la Plata Craton. Precambr Res 280:147–160

    Article  Google Scholar 

  • Oyhantçabal P et al (2007) Petrografía y química mineral de dos ocurrencias de formaciones de hierro bandeado (BIF) del sureste del Uruguay (Terreno Nico Pérez). Abstracts, Congreso Uruguayo de Geología, 19 p

    Google Scholar 

  • Oyhantçabal P et al (2011) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. Int J Earth Sci 100:201–220

    Article  Google Scholar 

  • Oyhantçabal P et al (2012) Paleo- and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay). Int J Earth Sci 101(7):1745–1762

    Article  Google Scholar 

  • Pattison DRM (2003) Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase-bearing metabasites with respect to the amphibolite and granulite facies. J Metamorph Geol 21:21–34

    Article  Google Scholar 

  • Pecoits E (2010) Ediacaran iron formations and carbonates of Uruguay: palaeoceanographic, palaeoclimatic and palaeobiologic implications. Ph.D. thesis, University of Alberta, 237 p

    Google Scholar 

  • Pecoits E et al (2016) U–Pb detrital zircon ages from some Neoproterozoic successions of Uruguay: provenance, stratigraphy and tectonic evolution. J S Am Earth Sci 71:108–130

    Article  Google Scholar 

  • Pedrosa-Soares AC, Wiedemann-Leonardos CM (2000) Evolution of the Araçuaí belt and its connection to the Ribeira belt, Eastern Brazil. In: Cordani U et al (eds) Tectonic evolution of South America. Sociedade Brasileira de Geologia, São Paulo, pp 265–285

    Google Scholar 

  • Pedrosa-Soares AC et al (1994) Nota explicativa dos mapas geológico, metalogenético e de ocorrências minerais do Estado de Minas Gerais, Escala 1:1.000.000

    Google Scholar 

  • Pereira RMP et al (2009) Unidade Caninana: Sequência clástica Paleoproterozóica revelada por datação U–Pb em zircões detríticos da Província Mineral Carajás. XI Simpósio de Geologia da Amazônia 2009, Manaus. Anais. SBG, CD-ROM, Brasília

    Google Scholar 

  • Pidgeon R et al (2000) Th-U–Pb isotopic systems and internal structures from an enderbite from the Pium Complex, Carajás Province, Brazil: evidence for the ages of granulite facies metamorphism and the protolith of the enderbite. Chem Geol 166:159–171

    Article  Google Scholar 

  • Pimentel MM (2016) The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: a geochronological and isotopic approach. Braz J Geol 46:67–82

    Article  Google Scholar 

  • Pimentel MM et al (1996) Dados Rb–Sr e Sm–Nd da região de Jussara-Goiás-Mossâmedes (GO), e o limite entre terrenos antigos do Maciço de Goiás e o Arco Magmático de Goiás. Revista Brasileira de Geociências 26:61–70

    Google Scholar 

  • Pimentel MM et al (2000a) The basement of the Brasília fold belt and the goiás magmatic arc. In: Cordani UG et al (eds) Tectonic evolution of South America. 31st International Geological Congress, Rio de Janeiro, pp 195–229

    Google Scholar 

  • Pimentel MM et al (2000b) The Neoproterozoic Goiás magmatic arc, central Brazil: a review and new Sm–Nd isotopic data. Revista Brasileira de Geociências 30(1):35–39

    Google Scholar 

  • Pimentel MM et al (2004) O embasamento da faixa Brasília e o arco magmático de Goiás. In: Mantesso-Neto V et al (Org) Geologia do continente Sul-Americano. Evolução da obra de Fernando Flávio Marques de Almeida. 1 ed. São Paulo. Beca 2004:355–368

    Google Scholar 

  • Pinheiro RVL, Holdsworth RE (1997) The structure of the Carajás N-4 ironstone deposit and associated rocks: relationship to Archean strike-slip tectonics and basement reactivation in the Amazon region, Brazil. J S Am Earth Sci 10:305–319

    Article  Google Scholar 

  • Pinheiro RVL, Holdsworth RE (2000) The anatomy of shallow-crustal transpressional structures: insights from the Archean Carajás fault zone, Amazon, Brazil. J Struct Geol 22:1105–1123

    Article  Google Scholar 

  • Pinto CP, Silva MA (2014) Mapa Geológico do Estado de Minas Gerais, 1:1.000.000. CPRM-CODEMIG, Belo Horizonte (CD-ROM)

    Google Scholar 

  • Pires FRM (1995) Textural and mineralogical variations during metamorphism of the proterozoic itabira iron formation in the Quadrilatero Ferrifero, Minas Gerais, Brazil. Anais Academia Brasileira de Ciencias 67:77–105

    Google Scholar 

  • Planavsky N et al (2010) Rare earth element and yttrium compositions of archean and paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Article  Google Scholar 

  • Pomerene IB (1964) Geology and mineral deposits of the Belo Horizonte, Ihirite and Maeacos quadrangles. U.S. geological survey professional paper 341-D, pp 1–84

    Google Scholar 

  • Popp RK et al (1977) Stability of Fe-Mg amphiboles with respect to oxygen fugacity. Am Miner 62:1–12

    Google Scholar 

  • Preciozzi F et al (1979) Carta geo-estructural del Uruguay, Escala 1:2.000.000. Instituto Geologico Ing. Terra Arocena, Montevideo, 62 p

    Google Scholar 

  • Preciozzi F et al (1985) Carta Geológica del Uruguay a escala 1:500.000. Dirección Nacional de Minería y Geología, Montevideo, 92 p

    Google Scholar 

  • Rasmussen B et al (2016) Dust to dust: Evidence for the formation of “primary” hematite dust in banded iron formations via oxidation of iron silicate nanoparticles. Precambr Res 284:49–63

    Article  Google Scholar 

  • Reeves RG (1966) Geology and mineral resources of the Monlevade and Rio Piracicaba Quadrangles, Minas Gerais, Brazil. U.S. geological survey professional paper 341-E, 58 p

    Google Scholar 

  • Renger FE et al (1994) Evolução sedimentar do Supergrupo Minas: 500 Ma. de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos 2:1–11

    Article  Google Scholar 

  • Rolim VK et al (2016) The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço range, southeast Brazil. J S Am Earth Sci 65:43–66

    Article  Google Scholar 

  • Rosière CA, Chemale F Jr (1991) Textural and structural aspects of iron ores from iron quadrangle, Brazil. In: Pagel M, Leroy JL (Org) Source, transport and deposition of metals. Balkema, Amsterdam, pp 485–488

    Google Scholar 

  • Rosière CA et al (2006) Structure and iron mineralisation in the Carajás Province. Proceedings iron ore 2005, Applied earth science. Trans Inst Min Metall B 115(4):126–136

    Google Scholar 

  • Rosière CA et al (2008) The itabirites of the Quadrilátero Ferrífero and related high-grade iron ore deposits: an overview. Rev Econ Geol 15:223–254

    Google Scholar 

  • Rosière CA et al (2013) Domainal fabrics of hematite in schistose, shear zone-hosted high-grade Fe ores: the product of the interplay between deformation and mineralization. J Struct Geol 55:150–166

    Article  Google Scholar 

  • Sanglard J et al (2014) A estrutura do segmento oeste da Serra do Curral, Quadrilátero Ferrífero, e o controle tectônico das acumulações compactas de alto teor em Fe. Geologia USP. Série Científica 13:81–95

    Article  Google Scholar 

  • Santos JOS (2003) Geotectônica dos Escudos das Guianas e Brasil-Central. In: Bizzi LA et al (eds) Geologia, tectônica e recursos minerais do Brasil. Companhia de Pesquisa e Recursos Minerais–CPRM, pp 169–226

    Google Scholar 

  • Santos JS (2015) Geologia da sequência metassedimentar Ibicuí-Iguaí na Serra do Lontra com ênfase no controle estrutural dos depósitos de ferro hipogênico. M.Sc. thesis, Universidade Federal da Bahia, Salvador

    Google Scholar 

  • Santos JOS et al (2000) A new understanding of the Amazon Craton Provinces based on integration of field mapping and U–Pb and Sm–Nd geochronology. Gondwana Res 3(4):453–488

    Article  Google Scholar 

  • Santos JOS et al (2003) Duration of the trans-amazonian cycle and its correlation within South America based on U–Pb SHRIMP geochronology of the La Plata Craton, Uruguay. Int Geol Rev 45:27–48

    Article  Google Scholar 

  • Santos JOS et al (2005) Metasedimentary rocks of the Imataca Complex, Venezuela: from Archean to Orosirian (Late-Transamazonian). In 12º Congreso Latinoamericano de Geologia, Anais, Quito, Equador

    Google Scholar 

  • Santos JOS et al (2006) A compartimentação do Cráton Amazonas em províncias: Avanços ocorridos no período 2000–2006. SBG, Simpósio de Geologia da Amazônia, IX, CD-ROM, Belém

    Google Scholar 

  • Santos JOS et al (2010) Two Statherian hydrothermal events in the Carajás Province: evidence from Pb–Pb SHRIMP and Pb–Th SHRIMP dating of hydrothermal anatase and monazite. VII SSAGI South American symposium on isotope geology. Anais, CD-ROM, Brasília

    Google Scholar 

  • Schobbenhaus C, Oliva LA (1979) Carta geológica do Brasil ao milionéssimo: folha Corumbá (SE.21), DNPM, Brasília. Escala de 1:1.000.000

    Google Scholar 

  • Schrank A (1982) Petrologie des komatiites et des rochesassociées de la ceintures verte du Massif Précambrien de Piumhi (Minas Gerais—Brazil). Thèse (3ème Cycle), Université de Paris-Sud, Orsay, 270

    Google Scholar 

  • Schrank A, Silva MG (1993) (1993) Greenstone Belts do Cráton do São Francisco, Brasil. In: Misi A, Dominguez JML (eds) O Craton do São Francisco. SBG/SGM/CNPq, Salvador, pp 85–118

    Google Scholar 

  • Seoane JCS et al (2004) Mapeamento litoestrutural 3-D do Grupo Grão Pará, Província Mineral de Carajás, PA. In: Simpósio Brasileiro Exploração Mineral, May 2004, CD ROM, ADIMB, Ouro Preto

    Google Scholar 

  • Sial AN et al (2015) Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. J S Am Earth Sci 61:33–52

    Article  Google Scholar 

  • Silva LC et al (2002) Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U–Pb SHRIMP, parte II: orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Revista Brasileira de Geociências 32(4):513–528

    Google Scholar 

  • Silva MG, Cunha JC (1999) Greenstone belts and equivalent volcano-sedimentary sequences of the São Francisco Craton, Bahia, Brasil, Brasil—Geology and mineral potential. In: Silva MG, Misi A (eds) Base Metal deposits of Brazil. MME/CPRM/DNPM, Belo Horizonte, pp 92–99

    Google Scholar 

  • Silveira Braga FC et al (2015) The Statherian itabirite-bearing sequence from the Morro Escuro Ridge, Santa Maria de Itabira, Minas Gerais, Brazil. J S Am Earth Sci 58:33–53

    Article  Google Scholar 

  • Simmons GC (1968) Geology and iron deposits of the western Serra do Curral, Minas Gerais, Brazil U.S. geological survey professional paper 341-G, 57 p

    Google Scholar 

  • Simonson BM (1984) High-energy shelf deposit: early Proterozoic wishart formation, northeastern Canada. SEPM Spec Publ 34:251–268

    Google Scholar 

  • Souza JD et al (2003) Mapa geológico do Estado da Bahia. CPRM

    Google Scholar 

  • Spoturno J et al (2004) Mapa geológico y de recursos minerales del Departamento de San José. Escala 1/100.000 DINAMIGE-Facultad de Ciencias. CD-ROM

    Google Scholar 

  • Suckau VE et al (2005) Transitional pyroclastic, volcanic-exhalative rocks to iron ores in the Caue Formation, Tamandua and Capitao do Mato Mines: An overview of metallogenetic and tectonic aspects. Simpósio do Craton de Sao Francisco, III, Companhia Bahiana de Pesquisa Mineral/Universidade Federal da Bahia/Sociedade Brasileira de Geologia, Anais, Salvador, pp 343–346

    Google Scholar 

  • Sun S et al (2015) Primary hematite in neoarchean to paleoproterozoic oceans. Geol Soc Am Bull 127:850–861

    Article  Google Scholar 

  • Tassinari CCG, Macambira MJB (1999) Geochronological provinces of the Amazonian Craton. Episodes 22(3):174–182

    Google Scholar 

  • Taylor D et al (2001) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Econ Geol 96:837–873

    Google Scholar 

  • Teixeira W et al (1996) Pb, Sr and Nd isotope constraints on the Archean evolution of gneissic-granitoid complexes in the southern São Francisco Craton, Brazil. Precambr Res 78:151–164

    Article  Google Scholar 

  • Trendall AF, Blockley JG (1970) The iron formations of the Precambrian Hamersley Group, Western Australia. Geol Surv West Austral Bull 119:366

    Google Scholar 

  • Trompette R et al (1998) Geological evolution of the Neoproterozoic Corumba graben system (Brazil). Depositional context of the stratified Fe and Mn ores of the Jacadigo Group. J S Am Earth Sci 11:587–597

    Article  Google Scholar 

  • Tsikos H et al (2003) Deposition, diagenesis, and secondary enrichment of metals in the Paleoproterozoic Hotazel iron-formation, Kalahari manganese field, South Africa. Econ Geol 98:1449–1462

    Google Scholar 

  • Uhlein A et al (1998) Proterozoic rifting and closure, SE border of the São Francisco Craton, Brazil. J S Am Earth Sci 11:191–203

    Article  Google Scholar 

  • Uhlein A et al (2011) A Formação Lagoa Formosa, Grupo Bambuí (MG): sistema deposicional de leque submarino em bacia de ante-país. Geonomos 19:163–172

    Google Scholar 

  • Urban H et al (1992) Iron and manganese deposits of the Urucum District, Mato Grosso do Sul, Brazil. Econ Geol 87:1375–1392

    Article  Google Scholar 

  • Vilela FT et al (2014) Metalogênese da Faixa Araçuaí: o distrito ferrífero de Nova Aurora (Grupo Macaúbas, norte de Minas Gerais) no contexto dos recursos minerais do Orógeno Araçuaí. In: Silva MGS et al (Org) Metalogênese das Províncias tectônicas brasileiras, pp 415–530

    Google Scholar 

  • Villaça JN (1981) Alguns aspectos sedimentares da Formação Moeda. Belo Horizonte, Bol. 2 SBG-MG:93–137

    Google Scholar 

  • Villas RN, Santos MD (2001) The gold deposits of the Carajás mineral province: deposit types and metallogenesis. Miner Deposita 36(3–4):300–331

    Google Scholar 

  • Wallace RM (1965) Geology and mineral resources of the Pico do Itabirito district, Minas Gerais, Brazil. U.S. geological survey professional paper 341 F, 68 p

    Google Scholar 

  • Wirth KR et al (1986) U–Pb ages of zircons from the Grão-Pará Group and Serra dos Carajás Granite, Pará, Brazil. Revista Brasileira de Geociências 16:195–200

    Google Scholar 

  • Young GM et al (1979) Middle and late Proterozoic evolution of the northern Canadian cordillera and shield. Geology 7:125–128

    Article  Google Scholar 

  • Zegeye A et al (2012) Green rust formation controls nutrient availability in a ferruginous water column. Geology 40:599–602

    Article  Google Scholar 

  • Zucchetti M (2007) Rochas máficas do Supergrupo Grão Pará e sua relação, com a mineralização de ferro dos depósitos N4 e N5, Carajás (PA). Ph.D. thesis, Belo Horizonte, Brazil, Universidade Federal de Minas Gerais, 125 p

    Google Scholar 

Download references

Acknowledgements

This chapter summarizes knowledge and information gathered from several research projects with the support of various funding agencies, including the Brazilian CNPq, FAPEMIG, FINEP, CAPES, ADIMB, and the DAAD and COFECUB, also with the help from many mining companies that generously gave access to inestimable information: MBR, SAMARCO, Ferrous Resources, Anglo American, CSN, Gerdau, Vallourec, Crusader, Centaurus, MMX, USIMINAS, GME4, BEMISA, VALE, BHP, Rio Tinto, and Tata Steel. We particularly thank Richard Lateulade and Minera Aratirí for providing samples, geological maps, and sample information for the Valentines IF of Uruguay. Access to cores and permission to send samples was granted by Derek Helm, Minera Aratirí, Uruguay. CAR extends his gratitude to his late supervisor and friend Prof. Dr. H. Quade from the TU Clausthal. CAR is recipient of a CNPq Grant 305115/2016-2. Useful comments and suggestions from reviewer C. Gauert are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Rosière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosière, C.A., Heimann, A., Oyhantçabal, P., Santos, J.O.S. (2018). The Iron Formations of the South American Platform. In: Siegesmund, S., Basei, M., Oyhantçabal, P., Oriolo, S. (eds) Geology of Southwest Gondwana. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-68920-3_18

Download citation

Publish with us

Policies and ethics