Skip to main content

The Gariep Belt

  • Chapter
  • First Online:
Geology of Southwest Gondwana

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

The Neoproterozoic to Early Cambrian Gariep Belt in southwestern Namibia and westernmost South Africa, together with the Damara and Kaoko belts further north and the Saldania Belt to the south, forms an important part of the larger network of Pan-African/Brasiliano orogenic belts in SW-Gondwana. It is subdivided into two major tectonostratigraphic units: the external, continental, para-autochthonous Port Nolloth Zone in the east and the largely oceanic, internal Marmora Terrane in the west. Owing to its generally low metamorphic grade, the rocks exposed in the Gariep Belt provide an excellent record of Neoproterozoic Earth history from continental break-up, multiple glaciations, opening of a narrow oceanic basin, to continental collision in the course of Gondwana assembly. Crustal thinning of the pre-existing, Late Mesoproterozoic supercontinent Rodinia prior to continental rifting led to repeated alkaline, predominantly acid, magmatism at shallow crustal levels, starting at 837 ± 2 Ma, widespread emplacement of a doleritic dyke swarm, which most likely served as feeders to a flood basalt province, and eventually bimodal, predominantly felsic, volcanic rocks along the principal growth fault at around 750 Ma. The continental, ≤771 ± 6 Ma rift deposits reflect alluvial plain and delta environments that evolved into a shallow sea. The prevailing glacial conditions at around 750 Ma are indicated by an older diamictite (Kaigas Formation), which is overlain by first regionally persistent carbonate deposits in the succession. Following a major hiatus of at least 100 million years, a new major sequence sets in, first with predominantly coarse-grained, largely immature siliciclastic sedimentary rocks, including dolomitic megabreccias above a major unconformity, and shallow marine stromatolitic reef mounds. These units grade into a second, regionally extensive sheet of glaciogenic diamictite with minor intercalated banded iron formation. At that stage the westernmost graben became reactivated into a probably narrow basin floored by oceanic crust (now partly preserved in the Marmora Terrane with equivalents in the Cuchilla Dionisio Terrane in Uruguay) and locally with oceanic islands that developed into guyots. The timing of oceanic magmatism is estimated at 610 Ma. So far, no evidence of the global c. 635 Ma Marinoan glaciation has been detected in the Gariep Belt and it is speculated that the area was land at that time. The formation of oceanic crust in the Marmora Terrane is explained by the reactivation of a previous rift-graben as back-arc basin behind the large 640–590 Ma Cuchilla Dionisio-Pelotas magmatic arc in the Dom Feliciano Belt in southeastern Brazil and Uruguay. Climatic recovery after the Numees glaciation coincided with the closure of the Marmora back-arc basin and was followed by flyschoid foredeep deposits on top and in front of the advancing thrust sheets of the Marmora Terrane prior to continental collision between 550 and 545 Ma. Contractional deformation was largely transpressive, directed towards the southeast, with a strong sinistral wrench component along its eastern margin, and led to a fold-thrust belt with a steep orogenic front against a basement ramp in the east and southeast. Eventual exhumation and erosion fed detritus into the Nama foreland basin. Post-orogenic alkaline magmatism affected the southern part of the belt and the adjoining basement at 507 ± 6 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alchin DJ et al (2005) Stratigraphic setting of the metalliferous Rosh Pinah Formation and the Spitzkop and Koivib Suites in the Pan-African Gariep Belt, southwestern Namibia. S Afr J Geol 108:19–34

    Article  Google Scholar 

  • Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433:123–127

    Article  Google Scholar 

  • Bartholomew LT (2008) Paleomagnetism of Neoproterozoic intraplate igneous rocks in the southwest Kalahari Craton, Namibia and South Africa. Unpublished MSc thesis, College of Science and Engineering, Texas Christian University, Austin

    Google Scholar 

  • Basei MAS et al (2005) A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts—evidence from a reconnaissance provenance study. Precambrian Res 139:195–221

    Article  Google Scholar 

  • Basei MAS et al (2008) West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. In: Pankhurst RJ et al (eds) West Gondwana: pre-cenozoic correlations across the South Atlantic Region. Geological Society of London, Special Publication, London, pp 239–256

    Google Scholar 

  • Basei MAS et al (2011) The basement of Punta del Este Terrane: Grenvillian rocks reworked during Brasiliano/Pan-African orogenesis. Int J Earth Sci 100:289–304

    Article  Google Scholar 

  • Borg G, Kottke‐Levin J (2007) Recognition of high‐T rhyolite melts in the Rosh Pinah—Skorpion Zn‐Pb district, Southern Namibia. In: Andrew CJ et al (eds) Digging deeper: Proceedings of the 9th Biennial SGA Meeting, Dublin, Ireland, pp 1049–1052

    Google Scholar 

  • Borg G et al (2003) Geology of the Skorpion zinc deposit, southern Namibia. Econ Geol 98:749–771

    Article  Google Scholar 

  • Cailteux JLH et al (2015) The Neoproterozoic West Congo ‘Schisto-Calcaire’ sedimentary succession from the Bas-Congo region (Democratic Republic of the Congo) in the frame of regional tentative correlations. Geol Belgica 18:126–146

    Google Scholar 

  • Cloud PE (1974) Giant stromatolites and associated vertical tubes from the Upper Proterozoic Noonday Dolomite, Death Valley region, eastern California. Geol Soc Am Bull 85:1869–1882

    Article  Google Scholar 

  • Cordani UG et al (2003) Tearing up Rodinia: the Neoproterozoic palaeogeography of South American cratonic fragments. Terra Nova 15:350–359

    Article  Google Scholar 

  • Davies C, Coward MP (1982) The structural evolution of the Gariep Arc in southern Namibia. Precambrian Res 17:173–198

    Article  Google Scholar 

  • De Villiers J, Söhnge PG (1959) The geology of the Richtersveld. Mem Geol Surv S Afr 48:1–295

    Google Scholar 

  • Diener JFA et al (2017) Pan-African accretionary metamorphism in the Sperrgebiet Domain, Gariep Belt, SW Namibia. Precambrian Res 292:152–162

    Article  Google Scholar 

  • Fölling PG, Frimmel HE (2002) Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Res 14:69–88

    Article  Google Scholar 

  • Fölling PG et al (2000) A novel approach to double-spike Pb-Pb dating of carbonate rocks: examples from Neoproterozoic sequences in southern Africa. Chem Geol 171:97–122

    Article  Google Scholar 

  • Foster DA et al (2009) Rapid exhumation of deep crust in an obliquely convergent orogen: the Kaoko Belt of the Damara Orogen. Tectonics 28:TC4002. doi:https://doi.org/10.1029/2008TC002317

  • Frimmel HE (1995) Metamorphic evolution of the Gariep Belt. S Afr J Geol 98:176–190

    Google Scholar 

  • Frimmel HE (2000a) New U-Pb zircon ages for the Kuboos pluton in the Pan-African Gariep belt, South Africa: Cambrian mantle plume or far field collision effect? S Afr J Geol 103:207–214

    Article  Google Scholar 

  • Frimmel HE (2000b) The Pan-African Gariep Belt in southwestern Namibia and western South Africa. Commun Geol Surv Namib 12:197–209

    Google Scholar 

  • Frimmel HE (2000c) The stratigraphy of the Chameis Sub-terrane in the Gariep Belt in southwestern Namibia. Commun Geol Surv Namib 12:179–186

    Google Scholar 

  • Frimmel HE (2008a) The Gariep Belt. In: Miller RM (ed) The geology of Namibia. Geological Survey of Namibia, pp 14.11–14.39

    Google Scholar 

  • Frimmel HE (2008b) An evaporitic facies in Neoproterozoic post-glacial carbonates: the Gifberg Group, South Africa. Gondwana Res 13:453–468

    Google Scholar 

  • Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353

    Article  Google Scholar 

  • Frimmel HE (2010) On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Res 182:239–253

    Article  Google Scholar 

  • Frimmel HE (2011) The Kaigas and Numees Formations, Port Nolloth Group, in South Africa and Namibia. In: Arnaud E et al (eds) The Geological Record of Neoproterozoic glaciations. Geological Society, London. Memoirs 36:223–231

    Google Scholar 

  • Frimmel HE, Board WS (2000) Fluid evolution in and around the Rosh Pinah massive sulphide deposit in the external Pan-African Gariep Belt, Namibia. S Afr J Geol 103:191–206

    Article  Google Scholar 

  • Frimmel HE, Fölling PG (2004) Late Vendian closure of the Adamastor Ocean: timing of tectonic inversion and syn-orogenic sedimentation in the Gariep Basin. Gondwana Res 7:685–699

    Article  Google Scholar 

  • Frimmel HE, Frank W (1998) Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia/South Africa. Precambrian Res 90:1–28

    Article  Google Scholar 

  • Frimmel HE, Hartnady CJH (1992) Blue amphiboles and their significance for the metamorphic history of the Pan-African Gariep belt, Namibia. J Metamorph Geol 10:651–669

    Article  Google Scholar 

  • Frimmel HE, Jiang S-Y (2001) Marine evaporites from an oceanic island in the Neoproterozoic Adamastor ocean. Precambrian Res 105:57–71

    Article  Google Scholar 

  • Frimmel HE, Jonasson I (2003) The controls on Neoproterozoic base metal sulphide mineralization. In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Proceedings of the 7th Biennial SGA Meeting, 24–28 Aug 2003, Athens. Millpress, Rotterdam, pp 661–664

    Google Scholar 

  • Frimmel HE et al (1996a) Geochemistry and tectonic setting of magmatic units in the Pan-African Gariep Belt, Namibia. Chem Geol 130:101–121

    Article  Google Scholar 

  • Frimmel HE et al (1996b) New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. J Geol 104:459–469

    Article  Google Scholar 

  • Frimmel HE et al (2001) Dating Neoproterozoic continental break-up in the Richtersveld Igneous Complex, South Africa. J Geol 109:493–508

    Article  Google Scholar 

  • Frimmel HE et al (2002) Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Res 14:55–67

    Article  Google Scholar 

  • Frimmel HE et al (2006) Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. J Afr Earth Sci 46:221–239

    Article  Google Scholar 

  • Frimmel HE et al (2011) Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective. Int J Earth Sci 100:323–354

    Article  Google Scholar 

  • Frimmel HE et al (2013) A new lithostratigraphic subdivision and geodynamic model for the Pan-African western Saldania Belt, South Africa. Precambrian Res 231:218–235

    Article  Google Scholar 

  • Gaucher C et al (2005) Organic-walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for the latest Neoproterozoic glaciations. Geol Mag 142:539–559

    Article  Google Scholar 

  • Gaucher C et al (2009) The Neoproterozoic and Cambrian: a time of upheavals, extremes and innovations. In: Gaucher C et al (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on Southwestern Gondwana. Elsevier, Amsterdam, pp 3–11

    Google Scholar 

  • Germs GJB (1995) The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology. Precambrian Res 73:137–151

    Article  Google Scholar 

  • Germs GJB et al (2009) Syn- to late-orogenic sedimentary basins of southwestern Africa. Neoproterozoic to early Palaeozoic evolution of Southwestern Gondwana. In: Gaucher C et al (eds) Neoproterozoic tectonics, global change and evolution: a focus on Southwestern Gondwana. Elsevier, Amsterdam, pp 183–203

    Google Scholar 

  • Goscombe B, Gray DR (2007) The coastal terrane of the Kaoko Belt, Namibia: outboard arc-terrane and tectonic significance. Precambrian Res 155:139–158

    Article  Google Scholar 

  • Gray DR, Foster DA et al (2008) A Damara orogen perspective on the assembly of southwestern Gondwana. In: Pankhurst RJ et al (eds) West Gondwana: pre-Cenozoic correlations across the South Atlantic Region. Geological Society of London, Special Publications, London, 294:279–296

    Google Scholar 

  • Gresse PG (1992) The tectono-sedimentary history of the Vanrhynsdorp Group. Mem Geol Surv S Afr 79:1–163

    Google Scholar 

  • Gresse PG (1994) Strain partitioning in the southern Gariep Arc as reflected by sheath folds and stretching lineations. S Afr J Geol 97:52–61

    Google Scholar 

  • Grey K et al (2003) Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology 31:459–462

    Article  Google Scholar 

  • Grotzinger JP et al (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598–604

    Article  Google Scholar 

  • Hanson RE et al (2011) Constraints on Neoproterozoic intraplate magmatism in the Kalahari Craton: geochronology and paleomagnetism of ~890–795 Ma extension-related igneous rocks in SW Namibia and adjacent parts of South Africa. Geological Society of America Annual Meeting, 9–12 Oct 2011, Minneapolis, Paper No. 7

    Google Scholar 

  • Hälbich IW, Alchin DJ (1995) The Gariep belt: stratigraphic-structural evidence for obliquely transformed grabens and back-folded thrust stacks in a combined thick-skin thin-skin structural setting. J Afr Earth Sci 21:9–33

    Article  Google Scholar 

  • Halverson GP et al (2005) Towards a Neoproterozoic composite carbon isotope record. Geol Soc Am Bull 117:1181–1207

    Article  Google Scholar 

  • Hegenberger W (1993) Stratigraphy and sedimentology of the Late Precambrian Witvlei and Nama Groups, east of Windhoek. Mem Geol Surv Namib 17:1–82

    Google Scholar 

  • Hoffmann K-H et al (2004) A U-Pb zircon date from the Neoproterozoic Ghaub formation, Namibia: constraints on Marinoan glaciation. Geology 32:817–820

    Article  Google Scholar 

  • Hofmann M et al (2014) The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana. Int J Earth Sci 103:1187–1202

    Article  Google Scholar 

  • Hoffman P (2011) Glaciogenic and associated strata of the Otavi carbonate platform and foreslope, northern Namibia: evidence for large base-level and glacioeustatic changes. In: Arnaud E et al (eds) The Geological Record of Neoproterozoic Glaciations. Geological Society of London. Memoirs, vol 36, pp 195–209

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  Google Scholar 

  • Hoffman PF et al (1998) Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia. GSA Today 8(5):1–9

    Google Scholar 

  • Hunter DR, Reid DL (1987) Mafic dyke swarms in southern Africa. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological Association of Canada Special Paper, 34:445–456

    Google Scholar 

  • Jacob J et al (2006) Some observations on diamondiferous bedrock gully trapsites on Late Cainozoic, marine-cut platforms of the Sperrgebiet, Namibia. Ore Geol Rev 28:493–506

    Article  Google Scholar 

  • Jiang G et al (2007) Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett 361:303–320

    Article  Google Scholar 

  • Kaiser E (1926) Die Diamanten Wüste. Dietrich Reimer, Berlin, 321 pp

    Google Scholar 

  • Kennedy MJ (2001) Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology 29:443–446

    Article  Google Scholar 

  • Knoll AH (2000) Learning to tell Neoproterozoic time. Precambrian Res 100:3–20

    Article  Google Scholar 

  • Konopásek J et al (2014) Timing and sources of pre-collisional Neoproterozoic sedimentation along the SW margin of the Congo Craton (Kaoko Belt, NW Namibia). Gondwana Res 26:386–401

    Article  Google Scholar 

  • Konopásek J et al (2016) Linking the basement geology along the Africa-South America coasts in the South Atlantic. Precambrian Res 280:221–230

    Article  Google Scholar 

  • Kröner A (1974) The Gariep Group, part I: late Precambrian formations in the western Richtersveld, northern Cape Province. Precambrian Research Unit, University of Cape Town. Bulletin, vol 13, pp 1–115

    Google Scholar 

  • Lamb MP et al (2012) Origin of giant wave ripples in snowball Earth cap carbonate. Geology 40:827–830

    Article  Google Scholar 

  • Lenz C et al (2011) U-Pb SHRIMP ages for the Cerro Bori orthogneisses, Dom Feliciano Belt in Uruguay: evidences of a ∼800 Ma magmatic and ∼650 Ma metamorphic event. Precambrian Res 185:149–163

    Article  Google Scholar 

  • Lohmeyer M (2013) Methodische Entwicklung GIS-basierter geogener Rohstoffpotentialkarten am Beispiel des südwestlichen Namibia. Unpublished MSc thesis, Institute of Geography and Geology, University of Würzburg, 109 p

    Google Scholar 

  • Macdonald FA et al (2010) Stratigraphy of the Port Nolloth Group of Namibia and South Africa and implications for the age of Neoproterozoic iron formations. Am J Sci 310:862–888

    Article  Google Scholar 

  • Macey PH et al (2017) Origin and evolution of the ~1.9 Ga Richtersveld magmatic Arc, SW Africa. Precambrian Res 292:417–451

    Article  Google Scholar 

  • McMillan MD (1968) The geology of the Witputs-Sendelingsdrif area. Precambrian Research Unit, University of Cape Town. Bulletin, vol 4, pp 1–177

    Google Scholar 

  • Martin H (1965) The Precambrian geology of South West Africa and Namaqualand. Precambrian Research Unit, University of Cape Town. Bulletin, vol 4, pp 1–177

    Google Scholar 

  • Master S, Wendorff M (2011) Neoproterozoic diamictites of the Katanga Supergroup, Central Africa. In: Arnaud E et al (eds) The Geological Record of Neoproterozoic Glaciations, Geological Society London. Memoirs, vol 36, pp 173–184

    Google Scholar 

  • Meert JG, Torsvik TH (2003) The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375:261–288

    Article  Google Scholar 

  • Middlemost EAK (1963) Geology of the southeastern Richtersveld. PhD thesis, University of Cape Town, Cape Town

    Google Scholar 

  • Middlemost EAK (1966) The genesis of the Stinkfontein Formation. Trans Geol Soc S Afr 69:87–98

    Google Scholar 

  • Miller RM (2013) Comparative stratigraphic and geochronological evolution of the northern Damara Supergroup in Namibia and the Katanga Supergroup in the Lufilian Arc of Central Africa. Geosci Can 40:118–140

    Article  Google Scholar 

  • Oriolo S et al (2016a) The Nico Pérez Terrane (Uruguay): from Archean crustal growth and connections with the Congo Craton to late Neoproterozoic accretion to the Río de la Plata Craton. Precambrian Res 280:147–160

    Google Scholar 

  • Oriolo S et al (2016b) Timing of deformation in the Sarandí del Yí Shear Zone, Uruguay: implications for the amalgamation of the Western Gondwana during the Neoproterozoic Brasiliano–Pan-African Orogeny. Tectonics 35. http://dx.doi.org/10.1002/2015TC004052

  • Oriolo S et al (in press) Contemporaneous assembly of Western Gondwana and final Rodinia break-up: Implications for the supercontinent cycle. Geosci Front. doi:http://dx.doi.org/10.1016/j.gsf.2017.01.009

  • Oyhantçabal P et al (2009) Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). J Geol Soc Lond 166:1075–1084

    Article  Google Scholar 

  • Pimentel MM et al (2000) The basement of the Brasilia Fold Belt and the Goiás Magmatic Arc. In: Cordani UG et al (eds) Tectonic Evolution of South America, Rio de Janeiro, pp 195–229

    Google Scholar 

  • Porada H (1989) Pan-African rifting and orogenesis in Southern to Equatorial Africa and Eastern Brazil. Precambrian Res 44:103–136

    Article  Google Scholar 

  • Prave AR et al (2011) The Witvlei Group of east-central Namibia. In: Arnaud E et al (eds) The Geological Record of Neoproterozoic Glaciations. Geological Society of London. Memoirs, vol 36, pp 211–216

    Google Scholar 

  • Pu JP et al (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44:955–958

    Article  Google Scholar 

  • Ransome IGD (1992) The geochemistry, kinematics and geodynamics of the Gannakouriep dyke swarm. MSc thesis, University of Cape Town, Cape Town, 182 pp

    Google Scholar 

  • Reid DL (1991) Alkaline rocks in the Kuboos-Bremen igneous province, southern Namibia: the Kanabeam multiple ring complex. Commun Geol Surv Namib 7:3–13

    Google Scholar 

  • Reid DL et al (1991) Time of emplacement and metamorphism of Late Precambrian mafic dykes associated with the Pan-African Gariep orogeny, Southern Africa: implications for the age of the Nama Group. J Afr Earth Sci 13:531–541

    Article  Google Scholar 

  • Rioux M et al (2010) Characterizing the U-Pb systematics of baddeleyite through chemical abrasion: application of multi-step digestion methods to baddeleyite geochronology. Contrib Miner Petrol 160:777–801

    Article  Google Scholar 

  • Ritter U (1980) The Precambrian evolution of the eastern Richtersveld. Precambrian Research Unit, University of Cape Town. Bulletin, vol 26, pp 1–276

    Google Scholar 

  • Robb LJ, Armstrong RA, Waters DJ (1999) The history of granulite-facies metamorphism and crustal growth from single zircon U-Pb geochronology: Namaqualand, South Africa. J Petrol 40:1747–1770

    Google Scholar 

  • Rogers AW (1916) The geology of part of Namaqualand. Trans Geol Soc S Afr 18(1915):72–101

    Google Scholar 

  • Rooney AD et al (2015) A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology 43:459–462

    Article  Google Scholar 

  • Schmid S (2017) Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Res 290:16–31

    Article  Google Scholar 

  • Smithies RH, Marsh JS (1996) Alkaline rocks in the Kuboos-Bremen Igneous Province, southern Namibia: the Grootpenseiland and Marinkas Kwela Complexes. Commun Geol Surv Namib 11:13–20

    Google Scholar 

  • Söhnge PG, de Villiers J (1948) The Kuboos Pluton and its associated line of intrusives. Trans Geol Soc S Afr 51:1–31

    Google Scholar 

  • Tack L et al (2001) Early Neoproterozoic magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Res 110:277–306

    Article  Google Scholar 

  • Thomas RJ et al (2016) The Sperrgebiet Domain, Aurus Mountains, SW Namibia: A ~ 2020–850 Ma window within the Pan-African Gariep Orogen. Precambrian Res 286:35–58

    Article  Google Scholar 

  • Vidal G, Moczydlowska-Vidal M (1997) Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology 23:230–246

    Article  Google Scholar 

  • Von Veh MW (1993) The stratigraphy and structural evolution of the Late Proterozoic Gariep Belt in the Sendelingsdrif-Annisfontein area, northwestern Cape Province. Precambrian Research Unit, University of Cape Town. Bulletin, vol 38, pp 1–174

    Google Scholar 

  • Wackerle R (2003) High resolution airborne geophysical survey program: TMI colour image. Geological Survey of Namibia, Windhoek

    Google Scholar 

  • Waters DJ et al (1983) A suggested reinterpretation of Namaqua basement and cover rocks south and west of Bitterfontein. Trans Geol Soc S Afr 86:293–299

    Google Scholar 

  • Will T et al (2014) Geochemical and isotope evidence for initiation of Cretaceous South Atlantic opening along a former Neoproterozoic back-arc basin: implications for the location of the main Pan-African suture in southwest Gondwana. Lithos 202–203:363–381

    Article  Google Scholar 

Download references

Acknowledgements

This chapter summarizes some 25 years of research on the Gariep Belt, which was only possible thanks to logistical and sometimes financial support from several mining companies, especially Kumba Resources and Namdeb, as well as several research grants from the South African National Research Foundation and more recently the German Research Foundation (DFG; grant No. FR 2183/8). Special thanks go to the guest editors, S. Siegesmund and M. A. S. Basei, for the invitation to contribute this chapter, and to the latter also for his repeated company during field work in Namibia and South Africa. A very careful examination of the manuscript by an anonymous reviewer is much appreciated. I thank the Royal Belgian Institute of Natural Sciences for providing office space during my sabbatical, during which the manuscript was drafted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig Ernest Frimmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frimmel, H.E. (2018). The Gariep Belt. In: Siegesmund, S., Basei, M., Oyhantçabal, P., Oriolo, S. (eds) Geology of Southwest Gondwana. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-68920-3_13

Download citation

Publish with us

Policies and ethics