Skip to main content

The Assembly of Western Gondwana: Reconstruction Based on Paleomagnetic Data

  • Chapter
  • First Online:
Geology of Southwest Gondwana

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

In the last two decades some consensus has been reached with regard to the assembly of Gondwana being a long and complex process. Reliable paleomagnetic data are essential to determine the paleogeographic and kinematic evolution of each Gondwana-forming block during its assembly as well as to place chronological constraints on such a process. A review of paleomagnetic data from Western Gondwana blocks indicates that the available Ediacaran to Cambrian database is still scarce and uneven for different cratons, despite clear improvement in the quantity and quality of paleomagnetic information in recent decades. The main constraints placed by the available information are as follows:

  • The Río de la Plata and Congo–Sao Francisco cratons were likely already attached by mid-Ediacaran times (c. 575 Ma) and not part of Rodinia.

  • The Arabian-Nubian Shield was part of proto-Gondwana by 550 Ma and probably even earlier.

  • Paleomagnetic constraints are virtually absent for the Kalahari craton.

  • Amazonia and West Africa were probably still part of Rodinia and attached to eastern Laurentia by the Early Ediacaran (c. 615 Ma), suggesting that a large Ediacaran Clymene Ocean existed between Amazonia and the Congo–Sao Francisco–Río de la Plata block.

  • The age of Amazonia amalgamation is poorly constrained by paleomagnetic data as ≥525 Ma.

  • The accretion of Eastern Gondwana blocks probably occurred in the latest Ediacaran-Cambrian times as suggested by the apparent polar wander path of Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelsalam MG, Stern RJ (1996) Sutures and shear zones in the Arabian-Nubian Shield. J Afr Earth Sci 23(3):289–310

    Article  Google Scholar 

  • Arrouy MJ et al (2015) Sedimentología y estratigrafía del Grupo La Providencia (nom. nov.): cubierta superior neoproterozoica, Sistema de Tandilia, Argentina. Lat Am J Sedimentol Basin Anal 22(2):171–189

    Google Scholar 

  • Bono RK, Tarduno JA (2015) A stable Ediacaran Earth recorded by single silicate crystals of the ca. 565 Ma Sept-Îles intrusion. Geology 43(2):131–134

    Article  Google Scholar 

  • Bossi J, Gaucher C (2004) The Cuchilla Dionisio Terrane, Uruguay: an allochthonous block accreted in the Cambrian to SW-Gondwana. Gondwana Res 7(3):661–674

    Article  Google Scholar 

  • Boudzoumou F et al (2011) Neoproterozoic paleomagnetic poles in the Taoudeni basin (West Africa). CR Geosci 343(4):284–294

    Article  Google Scholar 

  • Brito Neves BB et al (2000) Tectonic history of the Borborema Province, NW Brazil. In: Cordani UG et al (ed) Tectonic Evolution of South America: Rio de Janeiro, pp 151–182

    Google Scholar 

  • Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Campos Neto MC (2000) Orogenic systems from Southwestern Gondwana: an approach to Brasiliano-Pan African Cycle and orogenic collage in South Eastern Brasil. In: Cordani UG et al (eds) Tectonic evolution of South America, 31st international geological congress, Río de Janeiro, Brazil, pp 335–365

    Google Scholar 

  • Canfield DE et al (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315(5808):92–95

    Article  Google Scholar 

  • Cawood PA et al (2001) Opening Iapetus: constraints from the Laurentian margin in Newfoundland. Geol Soc Am Bull 113(4):443–453

    Article  Google Scholar 

  • Chew DM et al (2008) Detrital zircon fingerprint of the Proto-Andes: evidence for a neoproterozoic active margin? Precambrian Res 167(1):186–200

    Article  Google Scholar 

  • Chew DM et al (2011) Tectonic evolution of western Amazonia from the assembly of Rodinia to its break-up. Int Geol Rev 53(11–12):1280–1296

    Article  Google Scholar 

  • Collins AS, Pisarevsky SA (2005) Amalgamating eastern Gondwana: the evolution of the circum-Indian Orogens. Earth Sci Rev 71(3):229–270

    Article  Google Scholar 

  • Cordani UG et al (1999) Idades U-Pb (SHRIMP) de rochas vulcânicas das bacias de Campo Alegre, Itajai e Castro (SC e PR). Resumos An Acad Bras Cienc 71:835

    Google Scholar 

  • Cordani UG et al (2013) Was there an Ediacaran Clymene ocean in central South America? Am J Sci 313(6):517–539

    Article  Google Scholar 

  • D’Agrella-Filho MS, Pacca IG, Sato K (1986) Paleomagnetism of metamorphic rocks from the Piquete region—Ribeira Valley, Southeastern Brazil. Rev Bras Geof 4:79–84

    Google Scholar 

  • D’Agrella-Filho MSF, Pacca IG (1988) Paleomagnetism of the Itajai, Castro and Bon Jardim Groups from southern Brazil. Geophys J 93:365–376

    Article  Google Scholar 

  • D’Agrella-Filho MS, Raposo MIB, Egydio-Silva M (2004) Paleomagnetic study of the Juiz de Fora Complex, SE Brazil: implications for Gondwana. Gondwana Res 7(1):103–113

    Google Scholar 

  • Davies J et al (1980) The paleomagnetism of certain late Precambrian and early Paleozoic rocks from the Red Sea Hills, eastern desert. Egypt J Geophys Res Solid Earth 85(B7):3699–3710

    Article  Google Scholar 

  • Evans DA (2000) Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am J Sci 300(5):347–433

    Article  Google Scholar 

  • Font E et al (2011) Paleomagnetism and rock magnetism of the Neoproterozoic Itajaí Basin of the Rio de la Plata craton (Brazil): Cambrian to cretaceous widespread remagnetizations of South America. Gondwana Res 20(4):782–797

    Article  Google Scholar 

  • Font E et al (2012) Episodic remagnetizations related to tectonic events and their consequences for the South America Polar Wander Path. Geol Soc Lond Spec Publ 371(1):55–87

    Article  Google Scholar 

  • Garcia MSR et al (2013) Paleomagnetismo do Complexo Alcalino Planalto Da Serra (Mato Grosso): Implicações para a formação do Gondwana. Latin Lett 3(Special Issue OB19):1–8

    Google Scholar 

  • Gose WA et al (2004) Age of magnetization of Mesoproterozoic rocks from the Natal sector of the Namaqua-Natal belt, South Africa. J Afr Earth Sci 40(3):137–145

    Article  Google Scholar 

  • Gray DR et al (2006) 40 Ar/39 Ar thermochronology of the Pan-African Damara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution. Precambrian Res 150(1):49–72

    Article  Google Scholar 

  • Gray DR et al (2008) A Damara orogen perspective on the assembly of southwestern Gondwana. Geol Soc Lond Spec Publ 294(1):257–278

    Article  Google Scholar 

  • Gregory LC et al (2009) Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Res 170(1):13–26

    Article  Google Scholar 

  • Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252:1409–1412

    Article  Google Scholar 

  • Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci 28(1):17–33

    Article  Google Scholar 

  • Johansson Å (2014) From Rodinia to Gondwana with the ‘SAMBA’model—a distant view from Baltica towards Amazonia and beyond. Precambrian Res 244:226–235

    Article  Google Scholar 

  • Johnson PR, Woldehaimanot B (2003) Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geol Soc Lond Spec Publ 206(1):289–325

    Article  Google Scholar 

  • Khattach D et al (1995) A Cambrian pole for the Moroccan coastal meseta. Geophys J Int 120(1):132–144

    Article  Google Scholar 

  • Kempf O et al (2000) Paleomagnetic directions in late Precambrian glaciomarine sediments of the Mirbat Sandstone Formation, Oman. Earth Planet Sci Lett 175:181–190

    Article  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. The proterozoic biosphere: a multidisciplinary Study. Cambridge University Press, New York, pp 51–52

    Google Scholar 

  • Li ZX et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160(1):179–210

    Article  Google Scholar 

  • Li ZX et al (2013) Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment Geol 294:219–232

    Article  Google Scholar 

  • Luppo T et al (2017) Permo-Triassic collision of Patagonia? Paleomagnetic evidence. Latinmag Lett 7 (Special Issue, PM04):1–5

    Google Scholar 

  • McCausland PJ et al (2011) Ediacaran paleogeography of Laurentia: Paleomagnetism and 40 Ar–39 Ar geochronology of the 583 Ma Baie des Moutons syenite, Quebec. Precambrian Res 187(1):58–78

    Article  Google Scholar 

  • McElhinny MW, McFadden PL (2000) Paleomagnetism, continents and oceans. Int Geophys Ser 73:386

    Google Scholar 

  • McGee B et al (2012) G’day Gondwana—the final accretion of a supercontinent: U-Pb ages from the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Res 21(2):316–322

    Article  Google Scholar 

  • McWilliams MO (1981) Palaeomagnetism and Precambrian tectonic evolution of Gondwana. Dev Precambrian Geol 4:649–687

    Article  Google Scholar 

  • Meert JG (2001) Growing Gondwana and rethinking Rodinia: a paleomagnetic perspective. Gondwana Res 4(3):279–288

    Article  Google Scholar 

  • Meert JG (2003) A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362(1):1–40

    Article  Google Scholar 

  • Meert JG (2007) Testing the Neoproterozoic glacial models. Gondwana Res 11(4):573–574

    Article  Google Scholar 

  • Meert JG, Lieberman BS (2008) The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res 14(1):5–21

    Article  Google Scholar 

  • Meert JG, Van Der Voo R (1996) Paleomagnetic and 40Ar/39Ar Study of the Sinyai Dolerite, Kenya: implications for Gondwana Assembly. J Geol 104(2):131–142

    Article  Google Scholar 

  • Meert JG et al (2001) Paleomagnetism, geochronology and tectonic implications of the Cambrian-age Carion granite, Central Madagascar. Tectonophysics 340(1):1–21

    Article  Google Scholar 

  • Meert JG et al (2003) The stratoid granites of central Madagascar: paleomagnetism and further age constraints on Neoproterozoic deformation. Precambrian Res 120(1):101–129

    Article  Google Scholar 

  • Mitchell RN et al (2010) Rapid early Cambrian rotation of Gondwana. Geology 38(8):755–758

    Article  Google Scholar 

  • Moloto-A-Kenguemba GR et al (2009) A late Neoproterozoic paleomagnetic pole for the Congo craton: tectonic setting, paleomagnetism and geochronology of the Nola dike swarm (Central African Republic). Precambrian Res 164:214–226

    Article  Google Scholar 

  • Morel P (1981) Palaeomagnetism of a Pan-African diorite: a late Precambrian pole for western Africa. Geophys J R Astron Soc 65:493–495

    Article  Google Scholar 

  • Murphy J et al (2013) Potential geodynamic relationships between the development of peripheral orogens along the northern margin of Gondwana and the amalgamation of West Gondwana. Mineral Petrol 107:635–650

    Article  Google Scholar 

  • Murthy G et al (1992) Paleomagnetism of Eocambrian long range dykes and double mer formation from Labrador, Canada. Can J Earth Sci 29:1224–2123

    Article  Google Scholar 

  • Nomade S et al (2003) The Guiana and the West African shield Palaeoproterozoic grouping: New palaeomagnetic data for French Guiana and the Ivory Coast. Geophys J Int 154(3):677–694

    Article  Google Scholar 

  • Oriolo S et al (2016) Timing of deformation in the Sarandí del Yí Shear Zone, Uruguay: Implications for the amalgamation of western Gondwana during the Neoproterozoic Brasiliano-Pan-African Orogeny. Tectonics 35(3):754–771

    Article  Google Scholar 

  • Oyhantçabal P et al (2009) Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). J Geol Soc 166(6):1075–1084

    Article  Google Scholar 

  • Oyhantçabal P et al (2011) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. Int J Earth Sci 100(2–3):201–220

    Article  Google Scholar 

  • Pecoits E et al (2016) U Pb detrital zircon ages from some Neoproterozoic successions of Uruguay: provenance, stratigraphy and tectonic evolution. J S Am Earth Sci 71:108–130

    Article  Google Scholar 

  • Pimentel MM et al (2011) The tectonic evolution of the Brasilia Belt, central Brazil, based on SHRIMP and LA-ICPMS U-Pb sedimentar provenance data. J S Am Earth Sci 31(4):345–357

    Article  Google Scholar 

  • Pisarevsky SA et al (2001) Reply to comment by J.G. Meert and R. Van der Voo on ‘New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian’. Geophys J Int 146(3):871–873

    Article  Google Scholar 

  • Pisarevsky SA et al (2003) Models of Rodinia assembly and fragmentation. Geol Soc Lond Spec Publ 206(1):35–55

    Article  Google Scholar 

  • Poiré DG, Spalletti LA (2005) La cubierta sedimentaria precámbrica/paleozoica inferior del Sistema de Tandilia. In: De Barrio RE et al (eds) Geología y Recursos Minerales de la provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino, pp 51–68

    Google Scholar 

  • Powell CM, Pisarevsky SA (2002) Late neoproterozoic assembly of east Gondwana. Geology 30(1):3–6

    Article  Google Scholar 

  • Prave AR (1996) Tale of three cratons: tectonostratigraphic anatomy of the Damara orogen in northwestern Namibia and the assembly of Gondwana. Geology 24(12):1115–1118

    Article  Google Scholar 

  • Rapalini AE (2006) New late Proterozoic paleomagnetic pole for the Rio de la Plata craton: implications for Gondwana. Precambrian Res 147(3):223–233

    Article  Google Scholar 

  • Rapalini AE (2012) Paleomagnetic evidence for the origin of the Argentine Precordillera, fifteen years later: what is new, what has changed, what is still valid? Latin Lett 2:1–20

    Google Scholar 

  • Rapalini AE et al (2013) The La Tinta pole revisited: paleomagnetism of the Neoproterozoic Sierras Bayas Group (Argentina) and its implications for Gondwana and Rodinia. Precambrian Res 224:51–70

    Article  Google Scholar 

  • Rapalini AE et al (2015) The late Neoproterozoic Sierra de las Ánimas magmatic complex and playa Hermosa formation, southern Uruguay, revisited: paleogeographic implications of new paleomagnetic and precise geochronologic data. Precambrian Res 259:143–155

    Article  Google Scholar 

  • Rapalini AE et al (2017) Paleogeographic and kinematic constraints in the tectonic evolution of the Pre-Andean basement blocks. In: Folguera A et al (eds) The making of the Chilean-Argentinean Andes. Elsevier, Amsterdam

    Google Scholar 

  • Rapela CW et al (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83(1):49–82

    Article  Google Scholar 

  • Reeves CV et al (2004) Tight reassembly of Gondwana exposes phanerozoic shears in Africa as global tectonic players. Gondwana Res 7(1):7–19

    Article  Google Scholar 

  • Remmal T et al (2009) Evidence of syn tectonic tephrites with nepheline in the Sidi Said Maachou Cambrian basin (coastal Meseta, Morocco); geo dynamic implications. Estudios Geologicos (Madrid) 65(2):147–156

    Article  Google Scholar 

  • Saalmann K et al (2006) Tectonic evolution of the Neoproterozoic Sao Gabriel block, southern Brazil: constraints on Brasiliano orogenic evolution of the Río de la Plata cratonic margin. J S Am Earth Sci 21(3):204–227

    Article  Google Scholar 

  • Sánchez-Bettucci L, Rapalini AE (2002) Paleomagnetism of the Sierra de Las Animas Complex, southern Uruguay: Its implications in the assembly of western Gondwana. Precambrian Res 118(3):243–265

    Article  Google Scholar 

  • Sánchez-Bettucci L et al (2010) Neoproterozoic tectonic synthesis of Uruguay. Int Geol Rev 52(1):51–78

    Article  Google Scholar 

  • Santos TJS et al (2008) Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa). In: Pankhurst RJ et al (eds) West Gondwana: Pre-Cenozoic correlations across the Atlantic region. Geological Society of London Special Publications vol 294, pp 49–67

    Google Scholar 

  • Schmidt PW (2014) A review of Precambrian palaeomagnetism of Australia: palaeogeography, supercontinents, glaciations and true polar wander. Gondwana Res 25(3):1164–1185

    Article  Google Scholar 

  • Schmidt PW et al (2009) Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia: implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran system. Precambrian Res 174(1):35–52

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22(1):319–351

    Article  Google Scholar 

  • Symons DTA, Chiasson AD (1991) Paleomagnetism of the Callander Complex and the Cambrian apparent polar wander path for North America. Can J Earth Sci 28(3):355–363

    Article  Google Scholar 

  • Tahiri A et al (2005) A comparison of the neoproterozoic/lower palaeozoic lithostratigraphy of morocco and southwestern Iberia. Geodynamic interpretations. Geogaceta 38:203–206

    Google Scholar 

  • Tanczyk EI et al (1987) A paleomagnetic study of the layered mafic intrusion at Sept-Iles, Quebec. Can J Earth Sci 24(7):1431–1438

    Article  Google Scholar 

  • Tohver E, Trindade RI (2014) Comment on ‘Was there an Ediacaran Clymene Ocean in central South America?’ By UG Cordani and others. Am J Sci 314(3):805–813

    Article  Google Scholar 

  • Tohver E et al (2010) Closing the Clymene ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology 38(3):267–270

    Article  Google Scholar 

  • Trindade RIF et al (2003) Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton. Terra Nova 15(6):441–446

    Article  Google Scholar 

  • Trindade RIF et al (2006) Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci Lett 244(1):361–377

    Article  Google Scholar 

  • Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus oceans. Cambridge University Press, Cambridge

    Google Scholar 

  • Weil AB et al (1998) The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth Planet Sci Lett 154(1):13–24

    Article  Google Scholar 

  • Williams GE (2008) Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests. Earth Sci Rev 87(3):61–93

    Article  Google Scholar 

  • Xiao S (2004) Neoproterozoic glaciations and the fossil record. In: Jenkins GS et al (eds) The extreme proterozoic: geology, geochemistry, and climate, pp 199–214

    Google Scholar 

  • Yibas B et al (2002) The tectonostratigraphy, granitoid geochronology and geological evolution of the Precambrian of southern Ethiopia. J Afr Earth Sc 34(1):57–84

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank S. Segesmund for the invitation to present this review. Deep gratitude goes to Leda Sánchez Bettucci (Universidad de la República, Uruguay), Daniel Poiré (Universidad Nacional de La Plata, Argentina), Ricardo Trindade (Universidade de Sao Paulo, Brazil) and Eric Tohver (University of Western Australia) for long and productive cooperation in the study of Neoproterozoic successions of the Río de la Plata craton. Many thanks also go to many graduate and postgraduate students at Laboratorio de Paleomagnetismo Daniel A. Valencio (IGEBA, Universidad de Buenos Aires) and especially to Dr Carlos A. Vásquez of that institution. GMAP software was used to perform paleogeographic reconstructions and to plot paleomagnetic poles. A grant by Universidad de Buenos Aires (UBACyT-20020130100465BA) provided financial support. This is a contribution to IGCP 648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto E. Rapalini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rapalini, A.E. (2018). The Assembly of Western Gondwana: Reconstruction Based on Paleomagnetic Data. In: Siegesmund, S., Basei, M., Oyhantçabal, P., Oriolo, S. (eds) Geology of Southwest Gondwana. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-68920-3_1

Download citation

Publish with us

Policies and ethics