Skip to main content

Applications: Boundary Layers

  • Chapter
  • First Online:
Particle Image Velocimetry

Abstract

The following two experiments have been performed in the second half of the 1990s’ in the DLR low turbulence wind tunnel (TUG), which is of an Eiffel type. Screens in the settling chamber and a high contraction ratio of 15:1 lead to a low turbulence level in the test section (cross section \(0.3 \times 1.5\,\text {m}^2\)). The basic turbulence level in the test section of the TUG of \(Tu= 0.06\%\) (measured by means of a hot wire) allows the investigation of acoustically exited transition from laminar to turbulent flow as well as turbulent boundary layers that develop in the relatively long test section. The flow was seeded in the settling chamber upstream of the screens used to reduce the turbulence of the wind tunnel flow.

An overview of the Digital Content to applications on boundary layers can be found at [DC11.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, 4th edn. Wiley, New York (2012). DOI 10.1002/9781118032428. URL https://doi.org/10.1002/9781118032428

  2. Benedict, L.H., Gould, R.D.: Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22, 129–136 (1996). DOI 10.1007/s003480050030. URL https://doi.org/10.1007/s003480050030

  3. Bross, M., Kähler, C.J., (2016) Time-Resolved 3D-PTV Analysis of Near Wall Reverse Flow Events in APG Turbulent Boundary Layers. 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, July 4–7, Lisbon, Portugal

    Google Scholar 

  4. Bross, M., Kähler, C.J., (2017) Three Dimensional Near-Wall Events in an Adverse Pressure Gradient Boundary Layer. 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), July 6–9, Chicago, USA

    Google Scholar 

  5. Buchmann, N.A., Kücükosman, Y.C., Ehrenfried, K., Kähler, C.J.: Wall pressure signature in compressible turbulent boundary layers. In: Stanislas, M., Jimenez, J., Marusic, I. (eds.) Progress in Wall Turbulence 2, ERCOFTAC Series, vol. 23, pp. 93–102. Spinger, Cham (2015). DOI 10.1007/978-3-319-20388-1_8. URL https://doi.org/10.1007/978-3-319-20388-1_8

  6. Chauhan, K., Philip, J., de Silva, C.M., Hutchins, N., Marusic, I.: The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119–151 (2014). DOI 10.1017/jfm.2013.641. URL https://doi.org/10.1017/jfm.2013.641

  7. Cierpka, C., Scharnowski, S., Kähler, C.J.: Parallax correction for precise near-wall flow investigations using particle imaging. Appl. Opt. 52(12), 2923–2931 (2013). DOI 10.1364/AO.52.002923. URL https://doi.org/10.1364/AO.52.002923

  8. Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL https://doi.org/10.1007/s00348-013-1533-3

  9. Dennis, D.J.C., Nickels, T.B.: Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2 Long structures. J. Fluid Mech. 673, 218–244 (2011). DOI 10.1017/S0022112010006336. URL https://doi.org/10.1017/S0022112010006336

  10. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39(8), 1517–1531 (2001). DOI 10.2514/2.1476. URL https://doi.org/10.2514/2.1476

  11. Elsinga, G.E., van Oudheusden, B.W., Scarano, F.: Evaluation of aero-optical distortion effects in PIV. Exp. Fluids 39(2), 246–256 (2005). DOI 10.1007/s00348-005-1002-8. URL https://doi.org/10.1007/s00348-005-1002-8

  12. Fernholz, H.H., Finleyt, P.J.: The incompressible zero-pressure gradient turbulent boundary layer: an assessment of data. Prog. Aerosp. Sci. 32, 245–311 (1996). DOI 10.1016/0376-0421(95)00007-0. URL https://doi.org/10.1016/0376-0421(95)00007-0

  13. Fuchs, T; Hain, R; Kähler, C J. Double-frame 3D-PTV using a tomographic predictor. Experiments in Fluids 57(11) (November, 2016). DOI 10.1007/s00348-016-2247-0. URL https://doi.org/10.1007/s00348-016-2247-0

  14. Fuchs, T., Hain, R., Kähler, C.J.: Non-iterative double-frame 2D/3D particle tracking velocimetry. Experiments in Fluids 58(9), 119 (August, 2017). https://doi.org/10.1007/s00348-017-2404-0.URL https://doi.org/10.1007/s00348-017-2404-0

  15. Hain, R., Scharnowski, S., Reuther, N., Kähler, C.J., Schröder, A., Geisler, R., Agocs, J., Röse, A., Novara, M., Stanislas, M., Cuvier, C., Foucaut, J.M., Srinath, S., Laval, J., Willert, C., Klinner, J., Soria, J., Amili, O., Atkinson, C.: Coherent large scale structures in adverse pressure gradient turbulent boundary layers. In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 04-07 July (2016). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2016/finalworks2016/papers/03.7_5_135paper.pdf

  16. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007). DOI 10.1017/S0022112006003946. URL https://doi.org/10.1017/S0022112006003946

  17. Kähler, C.J.: Ortsaufgelöste Geschwindigkeitsmessungen in einer turbulenten Grenzschicht. Technical report, DLR, Göttingen, Germany (1997). DLR-FB-1997-32

    Google Scholar 

  18. Kähler, C.J.: High resolution measurements by long-range micro-PIV. VKI Lecture Series: Recent advances in Particle Image Velocimetry (2009). URL https://store.vki.ac.be/lecture-series-monographs/measurement-techniques/recent-advances-in-particle-image-velocimetry.html

  19. Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Exp. Fluids 33(6), 736–742 (2002). DOI 10.1007/s00348-002-0492-x. URL https://doi.org/10.1007/s00348-002-0492-x

  20. Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL https://doi.org/10.1007/s00348-012-1280-x

  21. Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL https://doi.org/10.1007/s00348-012-1307-3

  22. Kähler, C.J., Scharnowski, S., Cierpka, C.: Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 796, 257–284 (2016). DOI 10.1017/jfm.2016.250. URL https://doi.org/10.1017/jfm.2016.250

  23. Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL https://doi.org/10.1007/s00348-006-0167-0

  24. Knopp, T., Buchmann, N.A., Schanz, D., Eisfeld, B., Cierpka, C., Hain, R., Schröder, A., Kähler, C.J.: Investigation of scaling laws in a turbulent boundary layer flow with adverse pressure gradient using PIV. J. Turbul. 16(3), 250–272 (2015). DOI 10.1080/14685248.2014.943906. URL https://doi.org/10.1080/14685248.2014.943906

  25. Knopp, T., Schanz, D., Schröder, A., Dumitra, M., Cierpka, C., Hain, R., Kähler, C.J.: Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at \(Re_{\theta } = 10000\). Flow Turbul. Combust. 92, 451–471 (2014). DOI 10.1007/s10494-013-9479-3. URL https://doi.org/10.1007/s10494-013-9479-3

  26. Miller, J.D., Jiang, N., Slipchenko, M.N., Mance, J.G., Meyer, T.R., Roy, S., Gord, J.R.: Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry. Exp. Fluids 57(12), 192 (2016). DOI 10.1007/s00348-016-2279-5. URL https://doi.org/10.1007/s00348-016-2279-5

  27. Papageorge, M., Sutton, J.A.: Statistical processing and convergence of finite-record-length time-series measurements from turbulent flows. Exp. Fluids 57(8), 1–22 (2016). DOI 10.1007/s00348-016-2211-z. URL https://doi.org/10.1007/s00348-016-2211-z

  28. Samimy, M., Lele, S.K.: Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A 3(8), 1915–1923 (1991). DOI 10.1063/1.857921. URL https://doi.org/10.1063/1.857921

  29. Scarano, F., van Oudheusden, B.W.: Planar velocity measurements of a two-dimensional compressible wake. Exp. Fluids 34(3), 430–441 (2003). DOI 10.1007/s00348-002-0581-x. URL https://doi.org/10.1007/s00348-002-0581-x

  30. Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to Re\(_\theta =2500\) studied through simulation and experiment. Phys. Fluids 21(5), 051,702 (2009). DOI 10.1063/1.3139294. URL https://doi.org/10.1063/1.3139294

  31. Schrijer, F.F.J., Scarano, F., van Oudheusden, B.W.: Application of PIV in a Mach 7 double-ramp flow. Exp. Fluids 41(2), 353–363 (2006). DOI 10.1007/s00348-006-0140-y. URL https://doi.org/10.1007/s00348-006-0140-y

  32. Sillero, J.A., Jiménez, J., Moser, R.D.: One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta ^+ \approx \) 2000. Phys. Fluids 25(10), 105,102–17 (2013). DOI 10.1063/1.4823831. URL https://doi.org/10.1063/1.4823831

  33. Urban, W.D., Mungal, M.G.: Planar velocity measurements in compressible mixing layers. J. Fluid Mech. 431, 189–222 (2001). DOI 10.1017/S0022112000003177. URL https://journals.cambridge.org/article_S0022112000003177

  34. Wiegel, M., Fischer, M.: Proper orthogonal decomposition applied to PIV data for the oblique transition in a Blasius boundary layer. In: Cha, S.S., Trolinger, J.D. (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2546, pp. 87–97 (1995). DOI 10.1117/12.221512. URL https://doi.org/10.1117/12.221512

  35. Willert, C.E.: High-speed particle image velocimetry for the efficient measurement of turbulence statistics. Exp. Fluids 56(1), 17 (2015). DOI 10.1007/s00348-014-1892-4. URL https://doi.org/10.1007/s00348-014-1892-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Raffel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T., Kompenhans, J. (2018). Applications: Boundary Layers. In: Particle Image Velocimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-68852-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68852-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68851-0

  • Online ISBN: 978-3-319-68852-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics