Skip to main content

Intrathecal Drug Delivery: Pharmacokinetics and Dynamics

  • Chapter
  • First Online:
Advanced Procedures for Pain Management

Abstract

Implantation of an intrathecal drug delivery system (IDDS) requires a comprehensive knowledge of the process, including selection of appropriate patients and indications for implantation, the method of performing a trial, the surgical procedure of implantation, and the choice of pharmacologic agents. Additionally, knowledge of cerebrospinal fluid (CSF) dynamics plays an important role in determining IDDS success. This chapter addresses the pharmacologic fundamentals of the intrathecal agents that are typically used in an IDDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Henry-Feugeas MC, Idy-Peretti I, Baledent O, Poncelet-Didon A, Zannoli G, Bittoun J, et al. Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn Reson Imaging. 2000;18:387–95.

    Article  CAS  PubMed  Google Scholar 

  2. Friese S, Hamhaber U, Erb M, Kueker W, Klose U. The influence of pulse and respiration on spinal cerebrospinal fluid pulsation. Investig Radiol. 2004;39:120–30.

    Article  Google Scholar 

  3. Alperin N, Vikingstad EM, Gomez-Anson B, Levin DN. Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magn Reson Med. 1996;35:741–54.

    Article  CAS  PubMed  Google Scholar 

  4. Stockman HW. Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J Biochem Eng. 2006;128:106–14.

    Google Scholar 

  5. Degrell I, Nagy E. Concentration gradients for HVA, 5-HIAA, ascorbic acid, and uric acid in cerebrospinal fluid. Biol Psychiatry. 1990;27:891–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bernards CM. Cerebrospinal fluid and spinal cord distribution of baclofen and bupivacaine during slow intrathecal infusion in pigs. Anesthesiology. 2006;105:169–78.

    Article  PubMed  Google Scholar 

  7. Hettiarachchi HD, Hsu Y, Harris TJ Jr, Penn R, Linninger AA. The effect of pulsatile flow on intrathecal drug delivery in the spinal canal. Ann Biomed Eng. 2011;39:2592–602.

    Article  CAS  PubMed  Google Scholar 

  8. Weisner B, Bernhardt W. Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid: separate areas of reference. J Neurol Sci. 1978;37:205–14.

    Article  CAS  PubMed  Google Scholar 

  9. Yaksh TL, Rudy TA. Analgesia mediated by a direct spinal action of narcotics. Science. 1976;192:1357–8.

    Article  CAS  PubMed  Google Scholar 

  10. Basbaum AI, Clanton CH, Fields HL. Opiate and stimulus-produced analgesia: functional anatomy of a medullospinal pathway. Proc Natl Acad Sci. 1976;73:4685–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Behar M, Magora F, Olshwang D, Davidson JT. Epidural morphine in treatment of pain. Lancet. 1979;1(8115):527–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wang JK, Nauss LE, Thomas JE. Pain relief by intrathecally applied morphine in man. Anesthesiology. 1979;50:149–51.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuki A. Nothing new under the sun – a Japanese pioneer in the clinical use of intrathecal morphine [editorial]. Anesthesiology. 1983;58:289–90.

    Article  CAS  PubMed  Google Scholar 

  14. Childers SR, Snyder SH. Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci. 1978;23:759–61.

    Article  CAS  PubMed  Google Scholar 

  15. Childers SR, Creese I, Snowman AM, Synder SH. Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol. 1979;55:11–8.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115:1363–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kroin JS. Intrathecal drug administration: present use and future trends. Clin Pharmacokinet. 1992;22:319–26.

    Article  CAS  PubMed  Google Scholar 

  18. McQuay HJ, Sullivan AF, Smallman K, Dickenson AH. Intrathecal opioids, potency and lipophilicity. Pain. 1989;36:111–5.

    Article  CAS  PubMed  Google Scholar 

  19. Ummenhofer WC, Arends RH, Shen D, Bernards CM. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology. 2000;92:739–53.

    Article  CAS  PubMed  Google Scholar 

  20. Bernards CM, Shen DD, Sterling ES, Adkins JE, Risler L, Phillips B, Ummenhofer W. Epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidural opioids (part 1). Anesthesiology. 2003;99:455–65.

    Article  CAS  PubMed  Google Scholar 

  21. Bernards CM. Understanding the physiology and pharmacology of epidural and intrathecal opioids. Best Pract Res Clin Anaesthesiol. 2002;16:489–505.

    Article  CAS  PubMed  Google Scholar 

  22. Kroin JS, Ali A, York M, Penn RD. The distribution of medication along the spinal canal after chronic intrathecal administration. Neurosurgery. 1993;33:226–30; discussion 230.

    CAS  PubMed  Google Scholar 

  23. Staats P, Whitworth M, Barakat M, Anderson W, Lilienfeld S. The use of implanted programmable infusion pumps in the management of nonmalignant, chronic low-back pain. Neuromodulation. 2007;10:376–80.

    Article  PubMed  Google Scholar 

  24. Boswell MV, Iacono RP, Guthkelch AN. Sites of action of subarachnoid lidocaine and tetracaine: observations with evoked potential monitoring during spinal cord stimulator implantation. Reg Anesth. 1992;17:37–42.

    CAS  PubMed  Google Scholar 

  25. Jaffe RA, Rowe MA. Differential nerve block. Direct measurements on individual myelinated and unmyelinated dorsal root axons. Anesthesiology. 1996;84:1455–64.

    Article  CAS  PubMed  Google Scholar 

  26. Fink BR. Mechanisms of differential axial blockade in epidural and subarachnoid anesthesia. Anesthesiology. 1989;70:851–8.

    Article  CAS  PubMed  Google Scholar 

  27. Raymond SA. Subblocking concentrations of local anesthetics: effects on impulse generation and conduction in single myelinated sciatic nerve axons in frog. Anesth Analg. 1992;75:906–21.

    Article  CAS  PubMed  Google Scholar 

  28. Jaffe RA, Rowe MA. Subanesthetic concentrations of lidocaine selectively inhibit a nociceptive response in the isolated rat spinal cord. Pain. 1995;60:167–74.

    Article  CAS  PubMed  Google Scholar 

  29. Burm AG. Clinical pharmacokinetics of epidural and spinal anaesthesia. Clin Pharmacokinet. 1989;16:283–311.

    Article  CAS  PubMed  Google Scholar 

  30. Covino BG, Scott DB, Lambert DH. Handbook of spinal anesthesia and analgesia. Philadelphia, PA: WB Saunders; 1994.

    Google Scholar 

  31. Datta S, Kodali BS, Segal S. Obstetric anesthesia handbook. 5th ed. New York, NY: Springer; 2010.

    Book  Google Scholar 

  32. Hayek SM, Hanes MC. Intrathecal therapy for chronic pain: current trends and future needs. Curr Pain Headache Rep. 2014;18:388.

    Article  PubMed  Google Scholar 

  33. Veizi IE, Hayek SM, Narouze S, Pope JE, Mekhail N. Combination of intrathecal opioids with bupivacaine attenuates opioid dose escalation in chronic noncancer pain patients. Pain Med. 2011;12:1481–9.

    Article  PubMed  Google Scholar 

  34. Mironer YE, Haasis JC, Chapple I, Brown C, Satterthwaite JR. Efficacy and safety of intrathecal opioid/bupivacaine mixture in chronic nonmalignant pain: a double blind, randomized, crossover, multicenter study by the National Forum of Independent Pain Clinicians (NFIPC). Neuromodulation. 2002;5:208–13.

    Article  PubMed  Google Scholar 

  35. Deer TR, Caraway DL, Kim CK, Dempsey CD, Stewart CD, McNeil KF. Clinical experience with intrathecal bupivacaine in combination with opioid for the treatment of chronic pain related to failed back surgery syndrome and metastatic cancer pain of the spine. Spine J. 2002;2:274–8.

    Article  PubMed  Google Scholar 

  36. Hayek SM, Veizi E, Hanes M. Intrathecal hydromorphone and bupivacaine combination therapy for post-laminectomy syndrome optimized with patient-activated bolus device. Pain Med. 2015;17(3):561–71.

    PubMed  Google Scholar 

  37. McGivern JG. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2007;3:69–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wermeling D, Drass M, Ellis D, Mayo M, McGuire D, O'Connell D, et al. Pharmacokinetics and pharmacodynamics of intrathecal ziconotide in chronic pain patients. J Clin Pharmacol. 2003;43:624–36.

    Article  CAS  PubMed  Google Scholar 

  39. Yaksh TL, de Kater A, Dean R, Best BM, Miljanich GP. Pharmacokinetic analysis of ziconotide (SNX-111), an intrathecal N-type calcium channel blocking analgesic, delivered by bolus and infusion in the dog. Neuromodulation. 2012;15:508–19; discussion 519.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Westenbroek RE, Hoskins L, Catterall WA. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci. 1998;18:6319–30.

    CAS  PubMed  Google Scholar 

  41. Hayek SM, Hanes MC, Wang C, Veizi IE. Ziconotide combination intrathecal therapy for noncancer pain is limited secondary to delayed adverse effects: a case series with a 24-month follow-up. Neuromodulation. 2015;18:397–403.

    Article  PubMed  Google Scholar 

  42. Sierralta F, Naquira D, Pinardi G, Miranda HF. α-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception. Br J Pharmacol. 1996;119:551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng X, Zhang F, Dong R, Li W, Liu J, Zhao X, et al. Intrathecal administration of clonidine attenuates spinal neuroimmune activation in a rat model of neuropathic pain with existing hyperalgesia. Eur J Pharmacol. 2009;614:38–43.

    Article  CAS  PubMed  Google Scholar 

  44. Hassenbusch SJ, Gunes S, Wachsman S, Willis KD. Intrathecal clonidine in the treatment of intractable pain: a phase I/II study. Pain Med. 2002;3:85–91.

    Article  PubMed  Google Scholar 

  45. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain. 2015;156:88–95.

    Article  CAS  PubMed  Google Scholar 

  46. Hayek SM, Mekhail NA. Complex regional pain syndrome: redefining reflex sympathetic dystrophy and causalgia. Phys Sportsmed. 2004;32:18–25.

    Article  PubMed  Google Scholar 

  47. Deer TR, Pope JE, Hayek SM, Lamer TJ, Veizi IE, Erdek M, et al. The polyanalgesic consensus conference (PACC): recommendations for intrathecal drug delivery: guidance for improving safety and mitigating risks. Neuromodulation. 2017;20:155–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Sunghoon Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, K.S., Hayek, S.M. (2018). Intrathecal Drug Delivery: Pharmacokinetics and Dynamics. In: Diwan, S., Deer, T. (eds) Advanced Procedures for Pain Management. Springer, Cham. https://doi.org/10.1007/978-3-319-68841-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68841-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68839-8

  • Online ISBN: 978-3-319-68841-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics