Skip to main content

Dynamic and Adaptive Threshold for DNN Compression from Scratch

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

  • 3258 Accesses

Abstract

Despite their great success, deep neural networks (DNN) are hard to deploy on devices with limited hardware like mobile phones because of massive parameters. Many methods have been proposed for DNN compression, i.e., to reduce the parameters of DNN models. However, almost all of them are based on reference models, which were firstly trained. In this paper, we propose an approach to perform DNN training and compression simultaneously. More concretely, a dynamic and adaptive threshold (DAT) framework is utilized to prune a DNN gradually by changing the pruning threshold during training. Experiments show that DAT can not only reach comparable or better compression rate almost without loss of accuracy than state-of-the-art DNN compression methods, but also beat DNN sparse training methods by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  5. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  7. Denil, M., Shakibi, B., Dinh, L., deFreitas, N., et al.: Predicting parameters in deep learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156 (2013)

    Google Scholar 

  8. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In: Advances in Neural Information Processing Systems, pp. 1379–1387 (2016)

    Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Collins, M.D., Kohli, P.: Memory bounded deep convolutional networks. arXiv preprint arXiv:1412.1442 (2014)

  13. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep convolutional networks. arXiv (2015)

    Google Scholar 

  14. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3123–3131 (2015)

    Google Scholar 

  15. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

  16. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural networks with the hashing trick. In: ICML, pp. 2285–2294 (2015)

    Google Scholar 

  17. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1269–1277 (2014)

    Google Scholar 

  18. Zhang, X., Zou, J., Ming, X., He, K., Sun, J.: Efficient and accurate approximations of nonlinear convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1984–1992 (2015)

    Google Scholar 

  19. Lin, S., Ji, R., Guo, X., Li, X., et al.: Towards convolutional neural networks compression via global error reconstruction. In: International Joint Conferences on Artificial Intelligence (2016)

    Google Scholar 

  20. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient inference engine on compressed deep neural network. In: Proceedings of the 43rd International Symposium on Computer Architecture, pp. 243–254. IEEE Press (2016)

    Google Scholar 

  21. LeCun, Y., Denker, J.S., Solla, S.A., Howard, R.E., Jackel, L.D.: Optimal brain damage. In: NIPs, vol. 2, pp. 598–605 (1989)

    Google Scholar 

  22. Hassibi, B., Stork, D.G., et al.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, p. 164 (1993)

    Google Scholar 

  23. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)

    Google Scholar 

  24. Zaabab, A.H., Zhang, Q.J., Nakhla, M.S.: Device and circuit-level modeling using neural networks with faster training based on network sparsity. IEEE Trans. Microw. Theor. Tech. 45(10), 1696–1704 (1997)

    Article  Google Scholar 

  25. Ishikawa, M.: Structural learning with forgetting. Neural Networks 9(3), 509–521 (1996)

    Article  Google Scholar 

  26. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

Download references

Acknowledgments

We want to thank the reviewers for their valuable comments. This work was supported by the NSFC (U1605251, U1613216), the Young Elite Scientists Sponsorship Program by CAST (2016QNRC001), the CCF-Tencent Open Research Fund and the Royal Society Grant on “Data Driven Metaheuristic Search”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jiang, C., Li, G., Qian, C. (2017). Dynamic and Adaptive Threshold for DNN Compression from Scratch. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics