Skip to main content

Alginate-Based Nanosorbents for Water Remediation

  • Chapter
  • First Online:
Bio- and Nanosorbents from Natural Resources

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 843 Accesses

Abstract

The present chapter highlights the major concepts of the extraction, preparation, properties, and applications of brown algal mass. In recent years, brown marine weeds have been investigated as the most effective and promising substrates in water treatments. Thus, being motivated by the massive applications of algal masses, the authors have selected the alginate biopolymer as biosorbent and discussed its potential role in biosorption studies. Herein, we have described the nanocomposites of the seaweed alginate and its derivatives in water remediation. The sorption behavior of alginate and derivatives with various toxic heavy metals as well as radioactive elements is summarized, and their relative performance has been examined. The innovation in creation of synthetic derivatives has the potential to empower the next generation of applications for alginates. Further, the global market reports have emphasized on the upcoming continuous research innovation of marine brown seaweed in wastewater treatments in particularly the Asia-Pacific region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhishek, L., A. Karthik R, D.K. Kumar, and G. Sivakumar. 2014. The International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) 3: 17130–17138.

    Google Scholar 

  2. Namasivayam. C. 1995. Edited by R.K. Trivedy, Encyclopedia of environmental pollution and control. Enviro Media 1: 30–49.

    Google Scholar 

  3. Schwarzenbach, R.P., B.I. Escher, K. Fenner, T.B. Hofstetter, U. von Gunter, C.A. Johnson, and B. Wehrli. 2006. Science 313: 1072–1077.

    Google Scholar 

  4. Tripathi, A., and M.R. Ranjan. 2015. Journal of Bioremediation & Biodegradation 6: 1–5.

    Article  Google Scholar 

  5. Reife, A., and H.S. Freeman. 1996. Environmental Chemistry of Dyes and Pigments. New York: Wiley.

    Google Scholar 

  6. Lenntech. 2004. Water Treatment and Air Purification. Published by Lenntech, Rotterdam seweg, Netherlands www.excelwater.com/thp/filters/Water.Purification.htm.

  7. Ahmed, R.A., and A.M. Fekry. 2013. International Journal of Electrochemical Science 8: 6692–6708.

    CAS  Google Scholar 

  8. Khlifi, R., and A. Hamza-Chaffai. 2010. Toxicology and Applied Pharmacology 1571–1588.

    Google Scholar 

  9. Duran, C., A. Gundogdu, V.N. Bulut, M. Soylak, L. Elci, H.B. Senturk, and M. Tufekci. 2007. Journal of Hazardous Materials 146: 347–355.

    Article  CAS  Google Scholar 

  10. Chen, C.W., C.F. Chen, and C.D. Dong. 2012. International Journal of Geomate 6: 892–896.

    Google Scholar 

  11. Smith, A.H., E.O. Lingas, and R. Mahfuzar. 2000. Bulletin of the World Health Organization 78: 1093–1103.

    CAS  Google Scholar 

  12. Borba, C.E., R. Guirardello, E.A. Silva, M.T. Veit, and C.R.G. Tavares. 2006. Biochemical Engineering Journal 30: 184–191.

    Article  CAS  Google Scholar 

  13. Matschullat, J. 2000. Science of the Total Environment 249: 297–312.

    Article  CAS  Google Scholar 

  14. Huang, X., M. Sillanpä, E.T. Gjessing, S. Peräniemi, and R.D. Vogt. 2011. River Research and Applications 27: 113–121.

    Article  Google Scholar 

  15. Kurniawan, T.A., et al. 2006. Chemical Engineering Journal 118: 83–98.

    Article  CAS  Google Scholar 

  16. Kwon, J.S., S.T. Yun, J.H. Lee, S.O. Kim, and H.Y. Jo. 2010. Journal of Hazardous Materials 174: 307–313.

    Article  CAS  Google Scholar 

  17. Gottipati, R., and S. Mishra Susmita. 2012. Research Journal of Chemical Sciences 2: 40–48.

    CAS  Google Scholar 

  18. FuWei, Y., Z. BingJian, P. ChangChu, and Z. YuYao. 2009. Environmental Technological Sciences 52: 1641–1647.

    Article  Google Scholar 

  19. Rhim, J.W., H.M. Park, and C.S. Ha. 2013. Progress in Polymer Science 38: 1629–1652.

    Article  CAS  Google Scholar 

  20. Kalia, S., and L. Averous. 2011. Biopolymers: Biomedical and environmental applications. Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  21. Saha, D., and S. Bhattacharya. 2010. Journal of Food Science and Technology 47: 587–597.

    Article  CAS  Google Scholar 

  22. Lorenzo, G., N. Zaritzky, and A. Califano. 2012. Food Hydrocolloids 30: 672–680.

    Article  Google Scholar 

  23. Wen, S.S.Y., M.L. Rahman, S.E. Arshad, N.L. Surugau, and B. Musta. 2013. Journal of Applied Polymer Science 124: 4443–4453.

    Google Scholar 

  24. Guo, L., S.F. Zhang, B.Z. Ju, and J.Z. Yang. 2006. Carbohydrate Polymers 63 (4): 487–492.

    Article  CAS  Google Scholar 

  25. Ahmed, S.A. 2011. Carbohydrate Polymers 83 (1470): 1478.

    Google Scholar 

  26. Zhao, G., X. Wu, X. Tan, and X. Wang. 2011. The Open Colloid Science Journal 4: 19–31.

    Article  Google Scholar 

  27. Kavianinia, I., P.G. Plieger, N.G. Kandile, and D.R.K. Harding. 2012. Carbohydrate Polymers 87: 881–893.

    Article  CAS  Google Scholar 

  28. Davis, T.A., B. Volesky, and A. Mucci. 2003. Water Research 37: 4311–4330.

    Article  CAS  Google Scholar 

  29. Gupta, V.K., and A. Rastogi. 2008. Colloids Surf B Biointerfaces 64:170–178.

    Google Scholar 

  30. Robitzer, M., and F. Quignard. 2011. International Journal of Chemistry 65: 81–84.

    CAS  Google Scholar 

  31. Norton, I.T., W. Frith, and S. Ablett. 2006. Food Hydrocolloids 20: 229–239.

    Article  CAS  Google Scholar 

  32. Frampton, J.P., M.R. Hynd, M.L. Shuler and W. Shain. 2011. Biomedical Marterials 6: 1–18.

    Google Scholar 

  33. Vauchel, P., K. Leroux, R. Kaas, A. Arhaliass, R. Baron, and J. Legrand. 2009. Bioresource Technology 100: 1291–1296.

    Article  CAS  Google Scholar 

  34. Pawar, S.N., and J.E. Kevin. 2012. Biomaterials 954: 3729–3305.

    Google Scholar 

  35. Haug, A., S. Melsom, and S. Omang. 1974. Environmental Pollution 7: 179–192.

    Article  CAS  Google Scholar 

  36. Mandal, S.S., S.S. Kumar, B. Krishnamoorthy, and S.K. Basu. 2010. Brazilian Journal of Pharmaceutical Sciences 46: 785–793.

    Article  CAS  Google Scholar 

  37. Vijayalakshmi, K., T. Gomathi, and P.N. Sudha. 2014. Der Pharmacia Lettre 6: 65–77.

    CAS  Google Scholar 

  38. Arica, M., C. Arpa, A. Ergene, G. Bayramoglu, and O. Genç. 2003. Carbohydrate Polymers 52: 167–174.

    Article  Google Scholar 

  39. ManguaL, J.O., S. Li, H.J. Ploehn, A.D. Ebner, and J.A. Ritter. 2010. Journal of Magnetism and Magnetic Materials 322: 3094–3100.

    Article  CAS  Google Scholar 

  40. Tiwari, A., and P. Kathane. 2013. International Research Journal of Environmental Sciences 2: 44–53.

    Google Scholar 

  41. Tiwari, A., A. Soni, and A.K. Bajpai. 2012. Synthesis and reactivity in inorganic, metal, organic and nanometal chemistry 42: 1158–1166.

    Google Scholar 

  42. Harikumar, P.S., and L. Joseph. 2012. International Journal of Plant, Animal and Environmental Sciences 2: 159–166.

    Google Scholar 

  43. Singh, P., S.K. Singh, J. Bajpai, A.K. Bajpai, and R.B. Shrivastava. 2014. Journal of Materials Research and Technology 3: 3195–3202.

    Google Scholar 

  44. Gomez, A., K. Wrobel, S. Kazunori, and T.W. Tzu. 2012. International Congress on Informatics, Environment, Energy and Applications-IEEA, vol. 38, IACSIT Press, Singapore.

    Google Scholar 

  45. Fourest, E., and B. Volesky. 1995. Environmental Science and Technology 30: 277–282.

    Article  Google Scholar 

  46. Lee, I., C.G. Leea, J.A. Parka, J.K. Kanga, S.Y. Yoon, and S.B. Kim. 2013. Desalination and Water Treatment 51: 3438–3444.

    Article  CAS  Google Scholar 

  47. Yadav, M., and K.Y. Rhee. 2012. Carbohydrate Polymers 90 (1): 165–173.

    Article  CAS  Google Scholar 

  48. Sadeghi, M., M. Esmat, F. Shafiei, L. Mansouri, and H. Shasava. 2014. Oriental Journal of Chemistry 30 (1): 247–253.

    Article  CAS  Google Scholar 

  49. Bajpai, A.K., and Giri, A. 2003. Carbohydrate polymers 53: 271–278.

    Google Scholar 

  50. Agrawal, P., and A.K. Bajpai. 2011. Toxicological and Environmental Chemistry 93 (7): 1277–1297.

    Article  CAS  Google Scholar 

  51. Degen, P., S. Leick, F. Siedenbiedel, and H. Rehage. 2012. Colloid and Polymer Science 290 (2): 97–106.

    Article  CAS  Google Scholar 

  52. Hong, H.J., H.S. Jeong, B.G. Kim, J. Hong, et al. 2016. Chemosphere 165: 231–238.

    Article  CAS  Google Scholar 

  53. Lezeharia, M., J.-P. Baslya, M., O. Baudua. 2010. Bouras Colloids and Surfaces A: Physicochemical Engineering Aspects 366: 88–94.

    Google Scholar 

  54. Chen, W., J.H. Kim, D. Zhang, K.H. Lee, et al. 2013. Journal of the Royal Society, Interface 10 (88): 1–10.

    Article  Google Scholar 

  55. Alginate Market: Global Industry Analysis and Forecast 2016–2024 http://www.persistencemarketresearch.com/market-research/alginate-market.asp.

  56. Alginates & Derivatives Market—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2024 www.marketsandmarkets.com.

  57. Alginates & Derivatives Market—Global Trends & Forecast to 2019 http://www.fmcbiopolymer.com/Food/Ingredients/AlginatesPGA/Introduction.aspx.

  58. Commercial Seaweed Market Analysis By Product (Brown Seaweed, Red Seaweed, Green Seaweed), By Form (Liquid, Powdered, Flakes), By Application (Agriculture, Animal Feed, Human Consumption) And Segment Forecasts To 2024 http://www.grandviewresearch.com/industry-analysis/commercial-seaweed-market.

  59. Alginates & Derivatives Market worth $409.2 Million by 2019 http://www.marketsandmarkets.com/PressReleases/alginates-derivatives.asp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai .

Editor information

Editors and Affiliations

Annexure-I

Annexure-I

1.1 Legends to Tables

S. No.

Title

Table 1

The MCL standards and toxic effects of most hazardous heavy metals [4]

Table 2

The advantages and disadvantages of various physicochemical methods

1.2 Legends to Figures

S. No.

Title

Figure 1

Showing pictorial presentation of (a) Natural form of alginate and its molecular structure (b) Monomeric unit of β-d-mannuronate and α-l-glucuronate (c) Egg box model, cross-linking structure of alginate with metal ion (d) Polymeric chain of MM, GG, and MG type found in alginate

Figure 2

The extraction procedure of sodium alginate from brown algae

Figure 3

Proposed mechanistic pathway for synthesis of alginate-based copolymer [49]

Figure 4

Characteristics of alginate/Fe3O4 composite in strontium (Sr) removal from sea water

Figure 5

SEM images of alginate microbeads (a, b) in 50x and 400x magnification and alginate microsphere (c, d) in (SEM, Sirion, FEI, 5 kV) [53, 54]

Figure 6

The global alginate and derivatives market by type and application

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bajpai, A.K., Agrawal, P., Singh, S.K., Singh, P. (2018). Alginate-Based Nanosorbents for Water Remediation. In: Bhardwaj Mishra, S., Mishra, A. (eds) Bio- and Nanosorbents from Natural Resources. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-68708-7_5

Download citation

Publish with us

Policies and ethics