Skip to main content

The Parameterized Complexity of the Equidomination Problem

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

  • 620 Accesses

Abstract

A graph \(G=(V,E)\) is called equidominating if there exists a value and a weight function such that the total weight of a subset \(D\subseteq V\) is equal to t if and only if D is a minimal dominating set. To decide whether or not a given graph is equidominating is referred to as the Equidomination problem.

In this paper we show that two parameterized versions of the Equidomination problem are fixed-parameter tractable: the first parameterization considers the target value t leading to the Target-t Equidomination problem. The second parameterization allows only weights up to a value k, which yields the k-Equidomination problem.

In addition, we characterize the graphs whose every induced subgraph is equidominating. We give a finite forbidden induced subgraph characterization and derive a fast recognition algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://arxiv.org/abs/1705.05599.

References

  1. Benzaken, C., Hammer, P.: Linear separation of dominating sets in graphs. In: Bollobs, B. (ed.) Advances in Graph Theory, Annals of Discrete Mathematics, vol. 3, pp. 1–10. Elsevier (1978), http://www.sciencedirect.com/science/article/pii/S0167506008704928

  2. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge dominating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4_30

    Chapter  Google Scholar 

  3. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0017474

    Chapter  Google Scholar 

  4. Finbow, A., Hartnell, B., Nowakowski, R.: Well-dominated graphs: a collection of well-covered ones. Ars Combin. 25, 5–10 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Gutin, G., Zverovich, V.E.: Upper domination and upper irredundance perfect graphs. Discrete Math. 190(1), 95–105 (1998). http://www.sciencedirect.com/science/article/pii/S0012365X98000363

  6. Kim, E.J., Milanič, M., Schaudt, O.: Recognizing k-equistable graphs in FPT time. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 487–498. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_34

    Chapter  Google Scholar 

  7. Levit, V.E., Milanič, M., Tankus, D.: On the recognition of k-equistable graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 286–296. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34611-8_29

    Chapter  Google Scholar 

  8. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(13), 189–241 (1999). http://www.sciencedirect.com/science/article/pii/S0012365X98003197

  9. Milanič, M., Orlin, J., Rudolf, G.: Complexity results for equistable graphs and related classes. Ann. Oper. Res. 188, 359–370 (2011). https://doi.org/10.1007/s10479-010-0720-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Payan, C.: A class of threshold and domishold graphs: equistable and equidominating graphs. Discrete Math. 29(1), 47–52 (1980). https://doi.org/10.1016/0012-365X(90)90286-Q

    Article  MathSciNet  MATH  Google Scholar 

  11. Rautenbach, D., Zverovich, V.: Perfect graphs of strong domination and independent strong domination. Discrete Math. 226(1), 297–311 (2001). http://www.sciencedirect.com/science/article/pii/S0012365X00001163

  12. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_52

    Chapter  Google Scholar 

  13. Zverovich, I.E., Zverovich, V.E.: A characterization of domination perfect graphs. J. Graph Theor. 15(2), 109–114 (1991). https://doi.org/10.1002/jgt.3190150202

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Senger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaudt, O., Senger, F. (2017). The Parameterized Complexity of the Equidomination Problem. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics