Skip to main content

Distance Geometry in Active Structures

  • Chapter
  • First Online:
Mechatronics for Cultural Heritage and Civil Engineering

Abstract

Distance constraints are an emerging formulation that offers intuitive geometrical interpretation of otherwise complex problems. The formulation can be applied in problems such as position and singularity analysis and path planning of mechanisms and structures. This paper reviews the recent advances in distance geometry, providing a unified view of these apparently disparate problems. This survey reviews algebraic and numerical techniques, and is, to the best of our knowledge, the first attempt to summarize the different approaches relating to distance-based formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://www.bsc.es.

References

  1. Miura K (1984) Variable geometry truss concept. Technical report 614, The Institute of Space and Astronautical Science

    Google Scholar 

  2. Hughes PC, Sincarsin WC, Carroll KA (1991) Trussarm–a variable-geometry-truss manipulator. J Intell Mat Syst Struct 2(2):148–160

    Article  Google Scholar 

  3. Chirikjian GS, Burdick JW (1994) A hyper-redundant manipulator. IEEE Robot Autom Mag 1(4):22–29

    Article  Google Scholar 

  4. Sultan C, Corless M, Skelton RE (2000) Tensegrity flight simulator. J Guid Control Dyn 26(6):1055–1064

    Article  Google Scholar 

  5. Dadone P, Lacarbonara W, Nayfeh AH, Vanlandingham HF (2003) Payload pendulation reduction using a variable-geometry-truss architecture with LQR and fuzzy controls. J Vib Control 9(7):805–837

    MATH  Google Scholar 

  6. Stoughton RS, Tucker JC (1995) A variable geometry truss manipulator for positioning large payloads. In: American Nuclear Society meeting on robotics and remote systems

    Google Scholar 

  7. Finistauri AD, Fengfeng X (2009) Type synthesis and kinematics of a modular variable geometry truss mechanism for aircraft wing morphing. In: International conference on reconfigurable mechanisms and robots, pp 478–485

    Google Scholar 

  8. Miura K, Furuya H, Suzuki K (1985) Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronaut 12(7):599–607

    Article  Google Scholar 

  9. Kurita K, Inoue F, Furuya N, Shiokawa T, Natori M (2001) Development of adaptive roof structure by variable geometry truss. In: International symposium on automation and robotics in construction, pp. 1–6

    Google Scholar 

  10. Denavit J, Hartenberg R (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J Appl Mech 23:215–221

    MathSciNet  MATH  Google Scholar 

  11. Porta JM, Ros L, Thomas F (2005) On the trilaterable six-degree-of-freedom parallel and serial manipulators. In: IEEE international conference on robotics and automation, pp 960–967

    Google Scholar 

  12. Rojas N, Thomas F (2013) The univariate closure conditions of all fully-parallel planar robots derived from a single polynomial. IEEE Trans Robot 29(3):758–765

    Article  Google Scholar 

  13. Rojas N, Thomas F (2013) The closure condition of the double banana and its application to robot position analysis. In: IEEE international conference on robotics and automation, pp 4641–4646

    Google Scholar 

  14. Manocha D, Canny J (1994) Efficient inverse kinematics for general 6R manipulators. IEEE Trans Robot Autom 10:648–657

    Article  Google Scholar 

  15. Merlet JP (2000) Parallel robots. Springer

    Google Scholar 

  16. Guest S (1994) Deployable structures: concepts and analysis. PhD thesis, Cambridge University

    Google Scholar 

  17. Rosales C, Porta JM, Suárez R, Ros L (2008) Finding all valid hand configurations for a given precision grasp. In: IEEE International conference on robotics and automation, pp 1634–1640

    Google Scholar 

  18. Rodríguez A, Basañez L, Celaya E, (2008) A relational positioning methodology for robot task specification and execution. IEEE Trans Robot 24(3):600–611

    Google Scholar 

  19. Porta JM (2005) CuikSLAM: a kinematics-based approach to SLAM. In: IEEE international conference on robotics and automation, pp 2436–2442

    Google Scholar 

  20. García de Jalón J, Bayo E (1993) Kinematic and dynamic simulation of multibody systems. Springer

    Google Scholar 

  21. Bettig B, Hoffmann CM (2011) Geometric constraint solving in parametric computer-aided design. ASME J Comput Info Sci Eng 11:021001

    Article  Google Scholar 

  22. Wedemeyer WJ, Scheraga H (1999) Exact analytical loop closure in proteins using polynomial equations. J Comput Chem 20(8):819–844

    Article  Google Scholar 

  23. Cox D, Little J, O’Shea D (1997) An introduction to computational algebraic geometry and commutative algebra, 2nd edn. Springer

    Google Scholar 

  24. Raghavan M (1993) The Stewart platform of general geometry has 40 configurations. ASME J Mech Des 115:277–282

    Article  Google Scholar 

  25. Rojas N (2012) Distance-based formulations for the position analysis of kinematic chains. PhD thesis, Institut de Robòtica i Informàtica Industrial

    Google Scholar 

  26. Wohlhart K (2009) Position analyses of open normal Assur groups A(3.6). In: ASME/IFToMM Int Conf Reconfig Mech Robot, pp 88–94

    Google Scholar 

  27. Rojas N, Thomas F (2013) Application of distance geometry to tracing coupler curves of pin-jointed linkages. ASME J Mech Robot 5(2):021001

    Article  Google Scholar 

  28. Porta JM, Thomas F (2017) Closed-form position analysis of variable geometry trusses. Mech Mach Theory 109: 14–21

    Google Scholar 

  29. Blumenthal LM (1953) Theory and applications of distance geometry. Oxford University Press

    Google Scholar 

  30. Porta JM, Ros L, Thomas F (2005) Inverse kinematics by distance matrix completion. In: International workshop on computational kinematics

    Google Scholar 

  31. Lavor C, Liberti L, Maculan N (2006) The discretizable molecular distance geometry problem. Technical report

    Google Scholar 

  32. Liberti L, Lavor C (2013) On a relationship between graph realizability and distance matrix completion. In: Migdalas A (ed.) Optimization theory, decision making, and operations research applications, vol 31. Springer, pp 39–48

    Google Scholar 

  33. Porta JM, Ros L, Thomas F, Torras C (2002) Solving multi-loop linkages by iterating 2D clippings. In: Thomas F, Lenarcic J (eds.) Advances in robot kinematics. Kluwer Academic Publishers, pp 255–264

    Google Scholar 

  34. Porta JM, Ros L, Thomas F, Torras C (2003) A branch-and-prune algorithm for solving systems of distance constraints. In: IEEE international conference on robotics and automation, pp 342–348

    Google Scholar 

  35. Porta JM, Ros L, Thomas F, Torras C (2005) A branch-and-prune solver for distance constraints. IEEE Trans Robot 21(2):176–187

    Article  Google Scholar 

  36. Crippen G, Havel TF (1998) Distance geometry and molecular conformation. Research Studies Press

    Google Scholar 

  37. Rikun AD (1997) A convex envelope formula for multilinear functions. J Glob Optim 10:425–437

    Article  MathSciNet  MATH  Google Scholar 

  38. Ting Y, Yu-Shin YC, Jar HC (2004) Modeling and control for a Gough-Stewart platform CNC machine. Int J Robot Syst 21(11):609–623

    Article  MATH  Google Scholar 

  39. Cappel KL, Marlton N (1967) Motion simulator. U.S. patent 32 95 224

    Google Scholar 

  40. Su Y, Duan B, Nan R, Peng B (2003) Mechatronics design of stiffness enhancement of the feed supporting system for the square-kilometer array. IEEE/ASME Tranactions on Mechatronics 8(4):425–430

    Article  Google Scholar 

  41. Rojas N, Borràs J, Thomas F (2012) The octahedral manipulator revisited. In: IEEE international conference on robotics and automation, pp 2293–2298

    Google Scholar 

  42. Porta JM, Ros L, Thomas F, Corcho F, Cantó J, Pérez JJ (2007) Complete maps of molecular-loop conformational spaces. J Comput Chem 28(13):2170–2189

    Article  Google Scholar 

  43. Thomas F (2004) Solving geometric constraints by iterative projections and back projections. In: International conference on robotics and automation, pp 1789–1795

    Google Scholar 

  44. Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, Orlando, Florida

    MATH  Google Scholar 

  45. Porta JM, Thomas F Sensor localization from distance and orientation constraints

    Google Scholar 

  46. Thomas F (2014) Computing cusps of 3R robots using distance geometry. In: International symposium on advances in robot kinematics

    Google Scholar 

  47. Rull A, Porta JM, Thomas F (2014) Distance bound smoothing under orientation constraints. In: IEEE international conference on robotics and automation, pp 1431–1436

    Google Scholar 

  48. Thomas F (1995) An approach to the movers’ problem that combines oriented matroid theory and algebraic geometry. IEEE Int Conf Robot Autom 3:2285–2293

    Google Scholar 

  49. Havel T (1995) Distance geometry, pp 1701–1710. Wiley, New York

    Google Scholar 

  50. Bohigas O, Zlatanov D, Ros L, Manubens M, Porta JM (2015) A general method for the numerical computation of manipulator singularity sets. IEEE Trans Robot 30(2):340–351

    Article  Google Scholar 

  51. Borràs J (2011) Singularity-invariant leg rearrangements on Stewart-Gough platforms. PhD thesis, Institut de Robòtica i Informàtica Industrial

    Google Scholar 

  52. Borràs J, Thomas F, Torras C (2010) Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms. In: Robotics science and systems

    Google Scholar 

  53. Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press

    Google Scholar 

  54. LaValle SM (2006) Planning algorithms. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  55. Bohigas O, Henderson ME, Ros L, Manubens M, Porta JM (2013) Planning singularity-free paths on closed-chain manipulators. IEEE Trans Robot 29(4):888–898

    Article  Google Scholar 

  56. Lavalle SM (2011) Motion planning. Part I: the essentials. IEEE Robot Autom Mag 18(1):79–89

    Google Scholar 

  57. Siméon T, Laumond JP, Cortés J, Sahbani A (2004) Manipulation planning with probabilistic roadmaps. Int J Robot Res 23(7–8):729–746

    Article  Google Scholar 

  58. Rosales C, Porta JM, Ros L (2013) Grasp optimization under specific contact constraints. IEEE Trans Robot 29(3):746–757

    Article  Google Scholar 

  59. Ballantyne G, Moll F (2003) The da Vinci telerobotic surgical system: virtual operative field and telepresence surgery. Surg Clin North Am 83(6):1293–1304

    Article  Google Scholar 

  60. Trinkle JC, Milgram RJ (2001) Motion planning for planar n-bar mechanisms with revolute joints. IEEE/RSJ Int Conf Intell Robot Syst 3:1602–1608

    Google Scholar 

  61. Han L, Rudolph L, Blumenthal J, Valodzin I (2008) Stratified deformation space and path planning for a planar closed chain with revolute joints. In: Akella S, Amato NM, Huang WH, Mishra B (eds.) Algorithmic foundation of robotics VII, Springer tracts in advanced robotics, vol 47. Springer, pp 235–250

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under project DPI2014-57220-C2-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Porta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porta, J.M., Rojas, N., Thomas, F. (2018). Distance Geometry in Active Structures. In: Ottaviano, E., Pelliccio, A., Gattulli, V. (eds) Mechatronics for Cultural Heritage and Civil Engineering. Intelligent Systems, Control and Automation: Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-68646-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68646-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68645-5

  • Online ISBN: 978-3-319-68646-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics