Skip to main content

Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications

  • Chapter
  • First Online:
Optimization Methods and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 130))

Abstract

We describe our methodology for solving NP-hard irregular placement problems. We deal with an accurate representation of objects bounded by circular arcs and line segments and allow their free rotations within a container. We formulate a basic irregular placement problem (IRPP), which covers a wide spectrum of practical packing, cutting, nesting, clustering, and layout problems. We provide a nonlinear programming (NLP) model of the problem, employing the phi-function technique. Our model involves a large number of inequalities with nonsmooth functions. We describe a solution tree for our placement problem and evaluate the number of its terminal nodes. We reduce IRPP problem to a sequence of NLP-subproblems with smooth functions.

Our solution strategy is based on combination of discrete and continuous optimization methods. We employ two approaches to solve IRPP problem: a branching scheme algorithm and an efficient optimization algorithm, which involves a feasible starting point and local optimization procedures. To show the benefits of our methodology we present computational results for a number of new challenger and the best known benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alvarez-Valdes, R., Martinez, A., Tamarit, J.M.: A branch & bound algorithm for cutting and packing irregularly shaped pieces. Int. J. Prod. Econ. 145(2), 463–477 (2013)

    Article  Google Scholar 

  2. Bennell, J.A., Oliveira, J.F.: A tutorial in irregular shape packing problem. J. Oper. Res. Soc. 60, 93–105 (2009)

    Article  MATH  Google Scholar 

  3. Bennell, J.A., Scheithauer, G., Stoyan, Y., Romanova, T., Pankratov, A.: Optimal clustering of a pair of irregular objects. J. Glob. Optim. 61(3), 497–524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blazewicz, J., Drozdowski, M., Soniewicki, B., Walkowiak, R.: Two-dimensional cutting problem basic complexity results and algorithms for irregular shapes. Found. Cont. Eng. 14(3), 137–160 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Burke, E.K., Hellier, R., Kendall, G., Whitwell, G.: Complete and robust no-fit polygon generation for the irregular stock cutting problem. Eur. J. Oper. Res. 179(1), 27–49 (2007)

    Article  MATH  Google Scholar 

  6. Burke, E.K., Hellier, R., Kendall, G., Whitwell, G.: Irregular packing using the line and arc no-fit polygon. Oper. Res. 58(3), 948–970 (2010)

    Article  MATH  Google Scholar 

  7. Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes. Discret. Comput. Geom. 4(2), 139–181 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chernov, N., Stoyan, Y., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 43(4), 535–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chernov, N., Stoyan, Y., Romanova, T, Pankratov, A.: Phi-functions for 2D objects formed by line segments and circular arcs. Adv. Oper. Res. (2012). https://doi.org/10.1155/2012/346358

    MATH  Google Scholar 

  10. Egeblad, J., Nielsen, B.K., Odgaard, A.: Fast neighborhood search for two and three-dimensional nesting problems. Eur. J. Oper. Res. 183,1249–1266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomes, A.M.: Irregular packing problems: industrial applications and new directions using computational geometry. In: Proceedings of the Conference. Intelligent Manufacturing Systems, vol. 11, issue 1, pp. 378–383. Golden Tower, São Paulo (2014)

    Google Scholar 

  12. Gomes, A.M., Oliveira, J.F.: Solving irregular strip packing problems by hybridising simulated annealing and linear programming. Eur. J. Oper. Res. 171, 811–829 (2006)

    Article  MATH  Google Scholar 

  13. Imamichi, T., Yagiura, M., Nagamochi, H.: An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem. Discret. Optim. 6(3), 345–361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jones, D.R.: A fully general, exact algorithm for nesting irregular shapes. J. Glob. Optim. 59(2–3), 367–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 59(2–3), 405–437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leung, S.C.H., Lin, Y., Zhang, D.: Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Comput. Oper. Res. 39(3), 678–686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Milenkovic, V.: Rotational polygon containment and minimum enclosure using only robust 2D constructions. Comput. Geom. 13(1), 3–19 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pankratov, A.V., Stoyan, Y.G.: Placement of non-convex polygons with rotations into a non-convex polygon. In: Proceedings of the Workshop Cutting Stock Problems, pp. 29–36. Alutus, Miercurea-Ciuc (2005)

    Google Scholar 

  19. Rocha, P.: Geometrical models and algorithms for irregular shapes placement problems. PhD thesis, University of Porto (2014)

    Google Scholar 

  20. Rocha, P., Rui, R., Gomes, A.M., Andretta, M., Toledo, F.M.B.: Circle covering representation for nesting problems with continuous rotations. In: Proceedings of the 19th World Congress, August 24–29, vol. 19(1), pp. 5235–5240. The International Federation of Automatic Control, Cape Town (2014)

    Google Scholar 

  21. Stoyan, Y.G., Patsuk, V.M.: Covering a compact polygonal set by identical circles. Comput. Optim. Appl. 46, 75–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stoyan, Y., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. 65(2), 283–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wascher, G., Hauner, H., Schuma, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)

    Article  Google Scholar 

  25. Whitwell, G.: Novel heuristic and metaheuristic approaches to cutting and packing. PhD Thesis, School of Computer Science and Information Technology, University of Nottingham (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Romanova .

Editor information

Editors and Affiliations

Appendices

Appendix 1

We follow here the paper [3] to define placement objects. We consider phi-objects as mathematical models of our placement objects. A two-dimensional phi-object T is a canonically closed point set T ⊂ R 2 (T = cl (T) = cl(int(T)) having the same homotopic type as its interior (details of definition one can find in [2] and [8]). Each composed placement object T is given by an ordered collection of frontier elements l 1, l 2, …, l n , (in counterclockwise order). Each element l i is given by tuple \((x_i ,y_i,r_i ,x_{c_i } ,y_{c_i } )\) if l i is an arc or by tuple (x i , y i , 0) if l i is a line segment, where (x i , y i ) and (x i+1, y i+1) are the end points of l i , \((x_{c_i } ,y_{c_i } )\) is the center point of the arc generating circle C i of radius \(\left | {r_i } \right |\). We note that l i is a “convex” arc, if r i  > 0; l i is a “concave” arc, if r i  < 0 and assume (x i+1, y i+1) = (x 1, y 1) for i = n.

Given the ordered collection of line segments and circular arcs, in our program we apply the object decomposition algorithm described in [8] to obtain a set of basic objects automatically that covers our object T. The authors of the paper prove that each phi-object T, bounded by line segments and circular arcs, may be presented as a union of a finite number of basic objects of four types, including convex polygons (K), circular segments (D), hats (H), and horns (V ). Each basic object is the intersection of primitive objects (half-planes, circles, and circular holes). Illustrations of primitive and basic objects are given in Figure 25.

Fig. 25
figure 25

(a) Three types of primitive objects; (b) four types of basic objects

Thus, we represent placement object T in the form

$$\displaystyle \begin{aligned} T = \bigcup_{j = 1}^n {T_j } \quad \mathrm{with} \quad T_j \in \Re, \end{aligned} $$
(25)

where is the set of basic objects.

Example A

Let us consider two objects A and B given in Figure 26a. These can be decomposed into basic objects according to formula (25), so we have A = H ∪ K, B = D ∪ V , V, D, H, K ∈ , n A  = n B  = 2. See Figure 26b.

Fig. 26
figure 26

Object decomposition: (a) objects A and B, (b) decomposition of A and B into basic objects

We set that a circle T ≡ C is defined by its radius (r C ) and a convex m-polygon T ≡ K is defined by its vertices (x i , y i , i = 1, 2, .., m).

Appendix 2

Example B1

Let a basic phi-function Φ k in (6) be given in the form

$$\displaystyle \begin{aligned} \varphi = \min \{\max \left\{ {\varphi _1 ,\varphi _2 } \right\},\max \left\{ {\varphi _3 ,\varphi _4 } \right\}\}, \end{aligned}$$

where φ j  ∈{f}, j = 1, 2, 3, 4, here {f} is a family of smooth functions.

This function, according to (8), can take the following equivalent form:

$$\displaystyle \begin{aligned} \varphi = \max \{\min \left\{ {\varphi _1 ,\varphi _3 } \right\},\min \left\{ {\varphi _2 ,\varphi _3 } \right\},\min \left\{ {\varphi _1 ,\varphi _4 } \right\},\min \left\{ {\varphi _2 ,\varphi _4 } \right\}\}. \end{aligned} $$
(26)

Example B2

Let us consider a region W, which is described by inequality φ ≥ 0, where φ has the form (26). We emphasize that φ ≥ 0 if \(\min \left \{ {\varphi _1 ,\varphi _3 } \right \} \ge 0\) or \(\min \left \{ {\varphi _2 ,\varphi _3 } \right \} \ge 0\) or \(\min \left \{ {\varphi _1 ,\varphi _4 } \right \} \ge 0\) or \(\min \left \{ {\varphi _2 ,\varphi _4 } \right \} \ge 0\).

Taking into account

$$\displaystyle \begin{aligned} \min \left\{ {\varphi _1 ,\varphi _3 } \right\} \ge 0 \Leftrightarrow \left\{ {\begin{array}{l} \varphi _1 \ge 0 \\ \varphi _3 \ge 0 \\ \end{array}} \right., \end{aligned} $$
(27)
$$\displaystyle \begin{aligned} \min \left\{ {\varphi _2 ,\varphi _3 } \right\} \ge 0 \Leftrightarrow \left\{ {\begin{array}{l} \varphi _2 \ge 0 \\ \varphi _3 \ge 0 \\ \end{array}} \right., \end{aligned} $$
(28)
$$\displaystyle \begin{aligned} \min \left\{ {\varphi _1 ,\varphi _4 } \right\} \ge 0 \Leftrightarrow \left\{ {\begin{array}{l} \varphi _1 \ge 0 \\ \varphi _4 \ge 0 \\ \end{array}} \right., \end{aligned} $$
(29)
$$\displaystyle \begin{aligned} \min \left\{ {\varphi _2 ,\varphi _4 } \right\} \ge 0 \Leftrightarrow \left\{ {\begin{array}{l} \varphi _2 \ge 0 \\ \varphi _4 \ge 0 \\ \end{array}} \right., \end{aligned} $$
(30)

we can conclude that the region W can be presented as a union of subregions W 1, W 2, W 3 and W 4, described by the appropriate inequality systems in (27), (28), (29) and (30).

Appendix 3

Data to Instance n4 of Section 5.3

Four types of arc objects are considered: A 1, A 2, A 3, A 4 (see Figure 27). Each object is defined by tuple l A =(l 1, l 2, l 3), where \(l_i = (x_i ,y_i ,r_i ,x_{c_i } ,y_{c_i } ), i = 1,2,3\) (see Appendix 1 for details).

Fig. 27
figure 27

Four types of objects in Instance n4 of Section 5.3

For the first type object: \(l_{A_1 }=(-127.793885277, -31.260629710, \\ -269.683141074, -114.585285651, -300.620109728, 107.745848162, \\ -147.983732947, -855.023127662, 880.040475106, 218.929823670, \\ 25.145613652, 204.120208658, -286.311966465, -260.582463369, \\ 222.396098309)\),

For the second type object: \(l_{A_2 }=(-127.793885277, -31.260629710, \\ -222.243232453, -89.597792211, -250.196951150, 107.745848162, \\ -147.983732947, -341.501046399, 419.415318598, -8.394672165, \\ 114.198987902, 144.791346024, 164.379352457, 33.240703895, \\ 1.730772263)\),

For the third type object: \(l_{A_3 }=(-190.389372841, 30.002879612, \\ 263.715084806 28.896179393, 176.493468167, 45.150360598, \\ -86.720223626,227.048705406, -125.107278015, 63.491131206, \\ 51.603500338, 206.054855345, -179.259124424, -127.468038006, \\ 197.856206394)\),

For the fourth type object: \(l_{A_4 }=(-190.389372841, 30.002879612, \\ 181.347924897, -17.140772642, 83.593852669, 45.150360598, -86.720223626, \\ 214.700196049, -108.608670698, 63.127480656, 51.603500338, \\ 206.054855345, 477.417362860, 197.319382676, -248.581504831)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoyan, Y., Pankratov, A., Romanova, T. (2017). Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications. In: Butenko, S., Pardalos, P., Shylo, V. (eds) Optimization Methods and Applications . Springer Optimization and Its Applications, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-68640-0_25

Download citation

Publish with us

Policies and ethics