Skip to main content

Perinatal Infections

Role of Neuroimaging

  • Reference work entry
  • First Online:
Clinical Neuroradiology

Abstract

Despite major improvements in prenatal diagnosis, medications, and vaccine programs efficacy, perinatal infections of the CNS remain a significant cause of damage to the developing brain. Concerning congenital infections, the acronym TORCH is used to describe the main infecting agents where T stands for Toxoplasma gondii, O for other infections (including syphilis, varicella-zoster, and parvovirus B19), R for Rubella, C for Cytomegalovirus, and H for Herpes virus. Nowadays there is an increasing interest for Zika virus as a congenital infectious agent, given the recent outbreak in South America. The stage of development of the fetal brain at the time of the insult is more important than the virulent potential, and indeed the very nature, of the infecting agent. Infections occurring early in fetal life will result in congenital malformations, whereas infections occurring in late gestation will cause destructive lesions. All infecting agents reach the fetal brain through the transplacental route following primarily maternal infection, except for herpes virus which is transmitted during parturition.

Bacterial brain infections are a serious and common event in the neonatal population. Meningitis is more common in the neonatal period of life than any other time. Although the mortality rate has declined over the last decades, the morbidity rate remains almost the same. Bacterial meningitis is still considered to be a devastating disease, leaving survivors with serious neurologic sequelae. The complications of bacterial meningitis reflect the pathogenetic pathways and consist of effusion and empyemas, ventriculitis, hydrocephalus, venous thrombosis, and venous and arterial infarctions. Abscess formation can be a result of meningitis causing hemorrhagic necrosis.

The most common fungal infections during the neonatal period are caused by Candida species. Candida septicemia is frequent among neonates in the intensive care unit, especially among preterm infants of low birth weight. Additional risk factors include long-term treatment with wide spectrum antibiotics and steroids, parenteral nutrition, tracheal intubation, and vascular catheters.

Clinical neuroradiology in fetal and postnatal life plays an important role for the initial diagnosis and follow-up. Radiological techniques include ultrasound (which is the first imaging modality for the initial evaluation and for follow-up) and MRI, which is used to better delineate the lesions and to give information about the prognosis.

This publication is endorsed by: European Society of Neuroradiology (www.esnr.org)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMV:

Cytomegalovirus

CNS:

Central nervous system

CRS:

Congenital rubella syndrome

CSF:

Cerebrospinal fluid

CT:

Computer tomography

DTI:

Diffusion tensor imaging

DWI:

Diffusion weighted imaging

FA:

Fractional anisotropy

FLAIR:

Fluid attenuated inversion recovery

HCMV:

Human cytomegalovirus

HSV:

Herpes simplex virus

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

PCR:

Polymerase chain reaction

PVL:

Periventricular leukomalacia

RBC:

Red blood cell

rCBV:

relative cerebral blood volume

RT-PCR:

Reverse transcription polymerase chain reaction

SNHL:

Sensorineural hearing loss

TORCH:

Toxoplasma gondii, other, rubella, cytomegalovirus, herpes

US:

Ultrasound

WBC:

White blood cell

References

  • Averill LW, Kandula VV, Akyol Y, Epelman M. Fetal brain magnetic resonance imaging findings in congenital cytomegalovirus infection with postnatal imaging correlation. Semin Ultrasound CT MR. 2015;36:476–86.

    Article  Google Scholar 

  • Barkovich AJRC. Pediatric neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  • Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet. 2017;390:2099–109.

    Article  Google Scholar 

  • Best JM. Rubella. Semin Fetal Neonatal Med. 2007;12:182–92.

    Article  Google Scholar 

  • Cartes-Zumelzu FW, Stavrou I, Castillo M, Eisenhuber E, Knosp E, Thurnher MM. Diffusion-weighted imaging in the assessment of brain abscesses therapy. AJNR Am J Neuroradiol. 2004;25:1310–7.

    PubMed  Google Scholar 

  • Cheeran MC, Lokensgard JR, Schleiss MR. Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev. 2009;22:99–126., Table of Contents.

    Article  CAS  Google Scholar 

  • Huang CC, Chen CY, Yang HB, Wang SM, Chang YC, Liu CC. Central nervous system candidiasis in very low-birth-weight premature neonates and infants: US characteristics and histopathologic and MR imaging correlates in five patients. Radiology. 1998;209:49–56.

    Article  CAS  Google Scholar 

  • James SH, Kimberlin DW. Neonatal herpes simplex virus infection. Infect Dis Clin N Am. 2015;29:391–400.

    Article  Google Scholar 

  • Jaremko JL, Moon AS, Kumbla S. Patterns of complications of neonatal and infant meningitis on MRI by organism: a 10 year review. Eur J Radiol. 2011;80:821–7.

    Article  Google Scholar 

  • Kim KS. Neonatal bacterial meningitis. NeoReviews. 2015;16:e535–43.

    Article  Google Scholar 

  • Kimberlin DW. Neonatal herpes simplex infection. Clin Microbiol Rev. 2004;17:1–13.

    Article  Google Scholar 

  • Ku LC, Boggess KA, Cohen-Wolkowiez M. Bacterial meningitis in infants. Clin Perinatol. 2015;42:29–45, vii–viii.

    Article  Google Scholar 

  • Lai PH, Ho JT, Chen WL, Hsu SS, Wang JS, Pan HB, Yang CF. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23:1369–77.

    PubMed  Google Scholar 

  • Luthra G, et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol. 2007;28:1332–8.

    Article  CAS  Google Scholar 

  • Mao J, et al. MRI-DWI improves the early diagnosis of brain abscess induced by Candida albicans in preterm infants. Transl Pediatr. 2012;1:76–84.

    PubMed  PubMed Central  Google Scholar 

  • Marcinkowski M, Bauer K, Stoltenburg-Didinger G, Versmold H. Fungal brain abscesses in neonates: Sonographic appearances and corresponding histopathologic findings. J Clin Ultrasound. 2001;29:417–21.

    Article  CAS  Google Scholar 

  • Martin S. Congenital toxoplasmosis. Neonatal Netw. 2001;20:23–30.

    Article  CAS  Google Scholar 

  • Oliveira CR, Morriss MC, Mistrot JG, Cantey JB, Doern CD, Sanchez PJ. Brain magnetic resonance imaging of infants with bacterial meningitis. J Pediatr. 2014;165:134–9.

    Article  Google Scholar 

  • Plourde AR, Bloch EM. A literature review of Zika virus. Emerg Infect Dis. 2016;22:1185–92.

    Article  CAS  Google Scholar 

  • Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25:264–96.

    Article  CAS  Google Scholar 

  • Severino M, Zerem A, Biancheri R, Cristina E, Rossi A. Spontaneously regressing leukoencephalopathy with bilateral temporal cysts in congenital rubella infection. Pediatr Infect Dis J. 2014;33:422–4.

    Article  Google Scholar 

  • Soares de Oliveira-Szejnfeld P, et al. Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally. Radiology. 2016;281:203–18.

    Article  Google Scholar 

  • Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: Saunders/Elsevier; 2008.

    Google Scholar 

  • Yikilmaz A, Taylor GA. Sonographic findings in bacterial meningitis in neonates and young infants. Pediatr Radiol. 2008;38:129–37.

    Article  Google Scholar 

Further Reading

  • Bale JF Jr. Congenital infections. Neurol Clin. 2002;20:1039–60, vii.

    Article  Google Scholar 

  • Barkovich AJ, Girard N. Fetal brain infections. Childs Nerv Syst. 2003;19:501–7.

    Article  Google Scholar 

  • Coni E, Marcialis MA, Pintusa MC, Irmesi R, Masile V, Fanos V. Group B Stroptococcal meningitis: a description of six case reports. Int J Clin Pediatr. 2015;4:127–36.

    Article  Google Scholar 

  • de Vries LS, Gunardi H, Barth PG, Bok LA, Verboon-Maciolek MA, Groenendaal F. The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics. 2004;35:113–9.

    Article  Google Scholar 

  • Foerster BR, Thurnher MM, Malani PN, Petrou M, Carets-Zumelzu F, Sundgren PC. Intracranial infections: clinical and imaging characteristics. Acta Radiol. 2007;48:875–93.

    Article  CAS  Google Scholar 

  • Levine D, Jani JC, Castro-Aragon I, Cannie M. How does imaging of congenital Zika compare with imaging of other TORCH infections? Radiology. 2017;285:744–61.

    Article  Google Scholar 

  • Pahud BA, Greenhow TL, Piecuch B, Weintrub PS. Preterm neonates with candidal brain microabscesses: a case series. J Perinatol. 2009;29:323–6.

    Article  CAS  Google Scholar 

  • Ribeiro BG, Werner H, Lopes F, Hygino da Cruz LC, Jr., Fazecas TM, Daltro PAN, Nogueira RA. Central nervous system effects of intrauterine Zika virus infection: a pictorial review. Radiographics. 2017;37:1840–50.

    Article  Google Scholar 

  • Schneider JF. Neonatal brain infections. Pediatr Radiol. 2011;1(41 Suppl):S143–8.

    Article  Google Scholar 

  • Yang M, Wang L, Xia C, Qiao Z. Neonatal meningitis: preterm and term infants evaluated by magnetic-imaging-based score analysis. Radiol Infec Diseases. 2018;5:102–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Argyropoulou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xydis, V.G., Mouka, V.C., Argyropoulou, M.I. (2019). Perinatal Infections. In: Barkhof, F., Jäger, H., Thurnher, M., Rovira, À. (eds) Clinical Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-319-68536-6_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68536-6_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68535-9

  • Online ISBN: 978-3-319-68536-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics