Skip to main content

Theories, Techniques and Tools for Engineering Heterogeneous Railway Networks

  • Conference paper
  • First Online:
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification (RSSRail 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10598))

Abstract

Modernising outdated national railway systems will be done gradually due to practical constraints thus creating network areas with different signalling systems. Formal methods have been successfully applied in the railway domain for years. Yet the latest railway challenges such as heterogeneous railway signalling will require novel modelling techniques and adequate verification tools support. In this research we aim to develop new theories, techniques and tools for modelling and verification of complex networks comprising areas with a mixed signalling. This student paper discusses the research problem, related work and presents the ongoing work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To this date a moving block signalling solution only operates in urban networks.

References

  1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  3. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the Ninth ACM International Conference on Embedded Software, EMSOFT 2011, pp. 273–278. ACM, New York (2011)

    Google Scholar 

  4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babin, G., Aït-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based development of systems characterized by continuous functions. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 55–70. Springer, Cham (2015). doi:10.1007/978-3-319-25942-0_4

    Chapter  Google Scholar 

  6. Back, R.J.R.: Refinement calculus, part II: parallel and reactive programs. In: Bakker, J.W., Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer, Heidelberg (1990). doi:10.1007/3-540-52559-9_61

    Chapter  Google Scholar 

  7. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single hybrid event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

    Article  Google Scholar 

  8. Banci, M., Fantechi, A., Gnesi, S.: The role of formal methods in developing a distributed railway interlocking system. In: Proceedings of the 5th Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems (FORMS/FORMAT 2004), pp. 220–230 (2004)

    Google Scholar 

  9. Butler, M.: A system-based approach to the formal development of embedded controllers for a railway. Des. Autom. Embed. Syst. 6(4), 355–366 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cimatti, A., Pieraccini, P.L., Sebastiani, R., Traverso, P., Villafiorita, A.: Formal specification and validation of a vital communication protocol. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1584–1604. Springer, Heidelberg (1999). doi:10.1007/3-540-48118-4_34

    Chapter  Google Scholar 

  11. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_17

    Chapter  Google Scholar 

  12. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. Int. J. Control 79(5), 395–421 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. George, C., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.: The RAISE Development Method. Prentice Hall International (1995)

    Google Scholar 

  14. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed railway control system. IEEE Trans. Software Eng. 26(8), 687–701 (2000)

    Article  Google Scholar 

  15. Hei, X., Takahashi, S., Hideo, N.: Toward developing a decentralized railway signalling system using petri nets. In: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, pp. 851–855 (2008)

    Google Scholar 

  16. Hermanns, H., Jansen, D.N., Usenko, Y.S.: A comparative reliability analysis of ETCS train radio communications. Reports of SFB/TR 14 AVACS 2, SFB/TR 14 AVACS, February 2005. ISSN: 1860-9821. http://www.avacs.org

  17. Iliasov, A., Lopatkin, I., Romanovsky, A.: Unified Train Driving Policy, pp. 447–474. Wiley (2014)

    Google Scholar 

  18. Kim, K.D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)

    Article  Google Scholar 

  19. Kiss, T., Jánosi-Rancz, K.T.: Developing railway interlocking systems with session types and Event-B. In: Proceedings of the IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 93–98, May 2016

    Google Scholar 

  20. Knudsen, J., Ravn, A.P., Skou, A.: Design verification patterns. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 399–413. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75221-9_18

    Chapter  Google Scholar 

  21. Liu, Y., Tang, T., Liu, J., Zhao, L., Xu, T.: Formal modeling and verification of RBC handover of ETCS using differential dynamic logic. In: Proceedings of the International Symposium on the Autonomous Decentralized Systems (ISADS), pp. 67–72. IEEE (2011)

    Google Scholar 

  22. Madsen, M.S., Bæk, M.M.: Modelling a distributed railway control system. Master’s thesis, Technical University of Denmark, DTU, DK-2800 Kgs, Lyngby, Denmark (2005)

    Google Scholar 

  23. Morley, M.J.: Safety assurance in interlocking design. PhD thesis (1996)

    Google Scholar 

  24. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15205-4_36

    Chapter  Google Scholar 

  26. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_15

    Chapter  Google Scholar 

  27. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5_13

    Chapter  Google Scholar 

  28. ADVANCE project: Final report on application on railway domai, deliverable d1.4 workpackage 1. Technical report, 30 November 2014

    Google Scholar 

  29. INTO-CPS project: Case studies 2, deliverable d1.2. Technical report, November 2016

    Google Scholar 

  30. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new frontier. In: Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, SUTC 2008, pp. 1–9, June 2008

    Google Scholar 

  31. Silva, B.I., Stursberg, O., Krogh, B.H., Engell, S.: An assessment of the current status of algorithmic approaches to the verification of hybrid systems. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 3, pp. 2867–2874. IEEE (2001)

    Google Scholar 

  32. Stankaitis, P., Iliasov, A.: Safety verification of heterogeneous railway networks. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 150–159. Springer, Cham (2016). doi:10.1007/978-3-319-33951-1_11

    Google Scholar 

Download references

Acknowledgements

This work is supported by an iCASE studentship (EPSRC and Siemens Rail Automation). We are grateful to our colleagues from Siemens Rail Automation for invaluable feedback. We would also like to thank Guillaume Babin and Yamine Aït-Ameur for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulius Stankaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Stankaitis, P., Iliasov, A. (2017). Theories, Techniques and Tools for Engineering Heterogeneous Railway Networks. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2017. Lecture Notes in Computer Science(), vol 10598. Springer, Cham. https://doi.org/10.1007/978-3-319-68499-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68499-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68498-7

  • Online ISBN: 978-3-319-68499-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics